In this study, a soil moisture-based wireless sensor network (SM-WSN) was transferred to support irrigation management at field scale. This smart irrigation service comes from a necessity and willingness to upgrade the regional weather-based decision support system of the Tuscany region (Italy). The sensor network was designed, hydrologically, and agronomically validated in a commercial pear orchard during four growing seasons (2019–2022). Initially, the micro irrigation system was assessed based on its water distribution uniformity (DU) performance. Then, a zoning analysis was carried out to delineate homogeneous areas according to the normalized difference vegetation index (NDVI) and soil bulk electrical conductivity (ECb). Unlike the ordinary irrigation scheduling applied in the farm, the smart system allowed maintaining the soil water content within a pre-defined optimal range, in which the upper and lower limits corresponded respectively to the soil field capacity and the threshold below which water stress occurs. Based on the smart irrigation management, a water-saving up to 50 % of the total water supplied with the ordinary scheduling was achieved during the investigated growing seasons. Moreover, the quality of the productions (i.e., °Brix, fruit size and flesh firmness) was in line with the standard market reference values. Consequently, the adoption of the new technology, which aims to identify the most appropriate irrigation management, has the potential to generate positive economic returns and reduce environmental impacts.

Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard

Fatma Hamouda;Angela Puig-Sirera;Lorenzo Bonzi;Damiano Remorini;Rossano Massai;Giovanni Rallo
2024-01-01

Abstract

In this study, a soil moisture-based wireless sensor network (SM-WSN) was transferred to support irrigation management at field scale. This smart irrigation service comes from a necessity and willingness to upgrade the regional weather-based decision support system of the Tuscany region (Italy). The sensor network was designed, hydrologically, and agronomically validated in a commercial pear orchard during four growing seasons (2019–2022). Initially, the micro irrigation system was assessed based on its water distribution uniformity (DU) performance. Then, a zoning analysis was carried out to delineate homogeneous areas according to the normalized difference vegetation index (NDVI) and soil bulk electrical conductivity (ECb). Unlike the ordinary irrigation scheduling applied in the farm, the smart system allowed maintaining the soil water content within a pre-defined optimal range, in which the upper and lower limits corresponded respectively to the soil field capacity and the threshold below which water stress occurs. Based on the smart irrigation management, a water-saving up to 50 % of the total water supplied with the ordinary scheduling was achieved during the investigated growing seasons. Moreover, the quality of the productions (i.e., °Brix, fruit size and flesh firmness) was in line with the standard market reference values. Consequently, the adoption of the new technology, which aims to identify the most appropriate irrigation management, has the potential to generate positive economic returns and reduce environmental impacts.
2024
Hamouda, Fatma; Puig-Sirera, Angela; Bonzi, Lorenzo; Remorini, Damiano; Massai, Rossano; Rallo, Giovanni
File in questo prodotto:
File Dimensione Formato  
2014 AWM Design WSN Illuminati.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 17.1 MB
Formato Adobe PDF
17.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1272655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact