Arthrospira platensis has been utilized as a food source since ancient times due to its rich nutrient profile. In recent years, its popularity as a dietary supplement has soared, especially due to the presence of a water-soluble phycobiliprotein, C-phycocyanin C (C-PC), which is abundant and notable for its fluorescent properties. C-PC contains the chromophore phycocyanobilin B (PCB-B), a tetrapyrrole molecule, that is why it plays a dual role as a food colorant and as nutraceutical. However, comprehensive studies have mostly evaluated C-PC’s broader health-promoting properties, particularly its antioxidative and anti-inflammatory effects, which are linked to its ability to contrast oxidative stress and related pathological conditions. That is why this review explores recent advancements in optimizing culture conditions to enhance C-PC and PCB-B production, with a particular emphasis on novel extraction and purification techniques that increase yield and bioactivity. This focus on efficient production methods is crucial for expanding the commercial and therapeutic applications of C-PC, contributing to its growing relevance in the food and pharmaceutical industries.
Recent Advancements in Production and Extraction Methods of Phycobiliprotein C-phycocyanin by Arthrospira (Spirulina) platensis: A Mini Review
Torre, SerenellaSecondo
;Citi, Valentina;Flori, Lorenzo;Nieri, Paola
;Lutzu, Giovanni Antonio
2024-01-01
Abstract
Arthrospira platensis has been utilized as a food source since ancient times due to its rich nutrient profile. In recent years, its popularity as a dietary supplement has soared, especially due to the presence of a water-soluble phycobiliprotein, C-phycocyanin C (C-PC), which is abundant and notable for its fluorescent properties. C-PC contains the chromophore phycocyanobilin B (PCB-B), a tetrapyrrole molecule, that is why it plays a dual role as a food colorant and as nutraceutical. However, comprehensive studies have mostly evaluated C-PC’s broader health-promoting properties, particularly its antioxidative and anti-inflammatory effects, which are linked to its ability to contrast oxidative stress and related pathological conditions. That is why this review explores recent advancements in optimizing culture conditions to enhance C-PC and PCB-B production, with a particular emphasis on novel extraction and purification techniques that increase yield and bioactivity. This focus on efficient production methods is crucial for expanding the commercial and therapeutic applications of C-PC, contributing to its growing relevance in the food and pharmaceutical industries.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.