Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.

Experimental behaviour of ductile diagonal connections for rack supported warehouses

Agnese Natali
;
Francesco Morelli;Walter Salvatore;
2024-01-01

Abstract

Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.
2024
Natali, Agnese; Morelli, Francesco; Vulcu, Cristian; Tsarpalis, Dimitrios; Vamvatsikos, Dimitrios; Salvatore, Walter; Hoffmeister, Benno; Vayas, Ioann...espandi
File in questo prodotto:
File Dimensione Formato  
10518_2024_1999_OnlinePDF.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1280027
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact