The paper pursues the development of a novel methodology for the rapid identification of the diffuso-mechanical properties of polymer materials based on the employment of plates subject to asymmetric moisture concentration fields. The study is carried out on epoxy plate samples equipped with a thin aluminium foil on a surface exposed to the environment to promote asymmetric moisture absorption. The asymmetric moisture fields promote deformations of the plate. Mass gain and plate curvatures are measured as a function of time during conditioning. By using a weakly coupled diffuso-mechanical model: 1D Fick's diffusion model and 2D plane stress hygroelastic model the diffuso-mechanical properties of the material can be then identified. Due to the chosen size of the experimental samples the present study allows the identification of the coefficient of moisture expansion of the epoxy material. For the material under study, the following values can be identified for saturation mass gain, water diffusivity and coefficient of moisture expansion respectively: 1.67%, 0.025 mm2.h-1, 0.1628.

Rapid identification of the coefficient of moisture expansion of polymer materials by the employment of plates with asymmetric concentration fields

Marco Gigliotti
;
2024-01-01

Abstract

The paper pursues the development of a novel methodology for the rapid identification of the diffuso-mechanical properties of polymer materials based on the employment of plates subject to asymmetric moisture concentration fields. The study is carried out on epoxy plate samples equipped with a thin aluminium foil on a surface exposed to the environment to promote asymmetric moisture absorption. The asymmetric moisture fields promote deformations of the plate. Mass gain and plate curvatures are measured as a function of time during conditioning. By using a weakly coupled diffuso-mechanical model: 1D Fick's diffusion model and 2D plane stress hygroelastic model the diffuso-mechanical properties of the material can be then identified. Due to the chosen size of the experimental samples the present study allows the identification of the coefficient of moisture expansion of the epoxy material. For the material under study, the following values can be identified for saturation mass gain, water diffusivity and coefficient of moisture expansion respectively: 1.67%, 0.025 mm2.h-1, 0.1628.
2024
Beringhier, Marianne; Gigliotti, Marco; Vannucci, Paolo
File in questo prodotto:
File Dimensione Formato  
2024-JCM-Beringhier-et-al.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 936.8 kB
Formato Adobe PDF
936.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1281667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact