We study periodic tessellations of the Euclidean space with unequal cells arising from the minimization of perimeter functionals. Existence results and qualitative properties of minimizers are discussed for different classes of problems, involving local and non-local perimeters. Regularity is then addressed in the general case under volume penalization, and in the planar case with the standard perimeter, prescribing the volumes of each cell. Finally, we show the optimality of hexagonal tilings among partitions with almost equal areas.

Lattice tilings with minimal perimeter and unequal volumes

Francesco Nobili;Matteo Novaga
2024-01-01

Abstract

We study periodic tessellations of the Euclidean space with unequal cells arising from the minimization of perimeter functionals. Existence results and qualitative properties of minimizers are discussed for different classes of problems, involving local and non-local perimeters. Regularity is then addressed in the general case under volume penalization, and in the planar case with the standard perimeter, prescribing the volumes of each cell. Finally, we show the optimality of hexagonal tilings among partitions with almost equal areas.
2024
Nobili, Francesco; Novaga, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1282230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact