The paper presents an experimental and numerical investigation of non-conformal lubricated contacts in which anomalous film shapes occur. The experiments were concerned with the contact between a steel ball and the plane surface of a glass disc at various slide-roll ratios. A paraffin base mineral oil was used as the lubricant and friction coefficients and film thicknesses were measured. It was found that for slide-roll ratios with the disk moving faster anomalous EHL films were obtained characterised by a “dimple” in the central region of the contact. Numerical thermal-elastohydrodynamic analyses were carried out to simulate both film thickness and friction corresponding to the experimental conditions using Newtonian and Ree-Eyring rheological models. Initial results from this study suggest that neither of these lubricant models predict the correct detailed film shape and the experimental friction at the same time. An alternative lubricant model including both thermal and limiting shear stress effects (wall slippage) is currently under development.

Thermal point contact EHL analysis of rolling/sliding contacts with experimental comparison showing anomalous film shapes

CIULLI, ENRICO;
2009-01-01

Abstract

The paper presents an experimental and numerical investigation of non-conformal lubricated contacts in which anomalous film shapes occur. The experiments were concerned with the contact between a steel ball and the plane surface of a glass disc at various slide-roll ratios. A paraffin base mineral oil was used as the lubricant and friction coefficients and film thicknesses were measured. It was found that for slide-roll ratios with the disk moving faster anomalous EHL films were obtained characterised by a “dimple” in the central region of the contact. Numerical thermal-elastohydrodynamic analyses were carried out to simulate both film thickness and friction corresponding to the experimental conditions using Newtonian and Ree-Eyring rheological models. Initial results from this study suggest that neither of these lubricant models predict the correct detailed film shape and the experimental friction at the same time. An alternative lubricant model including both thermal and limiting shear stress effects (wall slippage) is currently under development.
2009
M., Carli; K. J., Sharif; Ciulli, Enrico; H. P., Evans; R. W., Snidle
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/128764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact