Featured Application: Studies utilizing GIS-based tools (e.g., PVGIS), which provide localized atmospheric data with a limited number of parameters. Accurate dew point estimation is crucial for measuring water condensation in various fields such as environmental studies, agronomy, or water harvesting, among others. Despite the numerous models and equations developed over time, including empirical and machine learning approaches, they often involve trade-offs between accuracy, simplicity, and computational cost. A major limitation of the current approaches is the lack of balance among these three factors, limiting their practical applications under diverse conditions. This research addresses these key challenges by developing a new, streamlined equation for dew point estimation. Using the Magnus–Tetens equation, deemed as the most reliable equation, as a benchmark, and by applying a process of non-linear regression fitting and parametric optimization, a new equation was derived. The results demonstrate high accuracy with a streamlined implementation, validated through extensive data and computational simulations. This study highlights the importance of accurate dew point modeling, especially under variable environmental conditions, provides a reliable solution to existing limitations, paving the way for enhanced efficiency in related processes and research endeavors, and offers researchers and practitioners a practical tool for more effective modeling of water condensation phenomena.

Development of an Optimized Non-Linear Model for Precise Dew Point Estimation in Variable Environmental Conditions

Bischi, Aldo;Baccioli, Andrea
2024-01-01

Abstract

Featured Application: Studies utilizing GIS-based tools (e.g., PVGIS), which provide localized atmospheric data with a limited number of parameters. Accurate dew point estimation is crucial for measuring water condensation in various fields such as environmental studies, agronomy, or water harvesting, among others. Despite the numerous models and equations developed over time, including empirical and machine learning approaches, they often involve trade-offs between accuracy, simplicity, and computational cost. A major limitation of the current approaches is the lack of balance among these three factors, limiting their practical applications under diverse conditions. This research addresses these key challenges by developing a new, streamlined equation for dew point estimation. Using the Magnus–Tetens equation, deemed as the most reliable equation, as a benchmark, and by applying a process of non-linear regression fitting and parametric optimization, a new equation was derived. The results demonstrate high accuracy with a streamlined implementation, validated through extensive data and computational simulations. This study highlights the importance of accurate dew point modeling, especially under variable environmental conditions, provides a reliable solution to existing limitations, paving the way for enhanced efficiency in related processes and research endeavors, and offers researchers and practitioners a practical tool for more effective modeling of water condensation phenomena.
2024
Hernandez-Torres, José Antonio; Torreglosa, Juan P.; Sanchez-Herrera, Reyes; Bischi, Aldo; Baccioli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1290272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact