We consider the nonlinear Schrödinger equation with multiplicative spatial white noise and an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove global well-posedness by using a gauge-transform introduced by Hairer and Labbé (Electron Commun Probab 20(43):11, 2015) and constructing the solution as a limit of solutions to a family of approximating equations. This paper extends a previous result by Debussche and Martin (Nonlinearity 32(4):1147–1174, 2019) with a sub-quadratic nonlinearity.
Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space
Debussche A.;Tzvetkov N.;Visciglia N.
2024-01-01
Abstract
We consider the nonlinear Schrödinger equation with multiplicative spatial white noise and an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove global well-posedness by using a gauge-transform introduced by Hairer and Labbé (Electron Commun Probab 20(43):11, 2015) and constructing the solution as a limit of solutions to a family of approximating equations. This paper extends a previous result by Debussche and Martin (Nonlinearity 32(4):1147–1174, 2019) with a sub-quadratic nonlinearity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


