This article proposes a particular strategy to proceed with a progressive electrification of public transport systems in cities. Starting from a bus operation model, the possible electrification of two routes is analyzed, one urban and another extra-urban in the city of Pisa. An estimate is made of the energy uses associated with certain operating modes. The maximum level of consumption is estimated at approximately 280 kWh per day per bus for the urban route and excluding some special days, less than 215 kWh per day for the extra-urban route, for which a hybrid bus is proposed. Starting from an estimate of the daily consumption for the management of the two routes, the sizing of a photovoltaic (PV) plant distributed on some modular shelters which serves to power the same routes, is carried out. The resulting system has a power of the order of 190–200 kW. The modular solution is also outlined, and an installation is proposed. The analyzed case lends itself to being easily replicated.

Green-Powered Electric Public Mobility: Integrating Urban and Interurban Routes—A Case Study Analysis

Franco A.
Primo
;
Lutzemberger G.;Bevilacqua M. G.;Quilici F. G.;Vezzani M.
2024-01-01

Abstract

This article proposes a particular strategy to proceed with a progressive electrification of public transport systems in cities. Starting from a bus operation model, the possible electrification of two routes is analyzed, one urban and another extra-urban in the city of Pisa. An estimate is made of the energy uses associated with certain operating modes. The maximum level of consumption is estimated at approximately 280 kWh per day per bus for the urban route and excluding some special days, less than 215 kWh per day for the extra-urban route, for which a hybrid bus is proposed. Starting from an estimate of the daily consumption for the management of the two routes, the sizing of a photovoltaic (PV) plant distributed on some modular shelters which serves to power the same routes, is carried out. The resulting system has a power of the order of 190–200 kW. The modular solution is also outlined, and an installation is proposed. The analyzed case lends itself to being easily replicated.
2024
Franco, A.; Lutzemberger, G.; Bevilacqua, M. G.; Quilici, F. G.; Vezzani, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1298748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact