In an influential 2005 paper, Michor and Mumford conjectured that in an infinite dimensional weak Riemannian manifold the vanishing of the geodesic distance is linked to the local unboundedness of the sectional curvature. We introduce infinite dimensional Hilbertian H-type groups equipped with any weak, graded, left invariant Riemannian metric. For these Lie groups we verify the above conjecture by showing that the vanishing of the geodesic distance and the local unboundedness of the sectional curvature coexist. We also observe that our class of weak Riemannian metrics yields the nonexistence of the Levi-Civita covariant derivative.

The Michor–Mumford Conjecture in Hilbertian H-Type Groups

Magnani, Valentino
;
Tiberio, Daniele
2025-01-01

Abstract

In an influential 2005 paper, Michor and Mumford conjectured that in an infinite dimensional weak Riemannian manifold the vanishing of the geodesic distance is linked to the local unboundedness of the sectional curvature. We introduce infinite dimensional Hilbertian H-type groups equipped with any weak, graded, left invariant Riemannian metric. For these Lie groups we verify the above conjecture by showing that the vanishing of the geodesic distance and the local unboundedness of the sectional curvature coexist. We also observe that our class of weak Riemannian metrics yields the nonexistence of the Levi-Civita covariant derivative.
2025
Magnani, Valentino; Tiberio, Daniele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1303368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact