We discuss, in a non-Archimedean setting, the distribution of the coefficients of L-polynomials of curves of genus g over $\mathbb{F}_q$. Among other results, this allows us to prove that the $\mathbb{Q}$-vector space spanned by such characteristic polynomials has dimension g + 1. We also state a conjecture about the Archimedean distribution of the number of rational points of curves over finite fields.

On the L-polynomials of curves over finite fields

Davide Lombardo;Matteo Verzobio
2025-01-01

Abstract

We discuss, in a non-Archimedean setting, the distribution of the coefficients of L-polynomials of curves of genus g over $\mathbb{F}_q$. Among other results, this allows us to prove that the $\mathbb{Q}$-vector space spanned by such characteristic polynomials has dimension g + 1. We also state a conjecture about the Archimedean distribution of the number of rational points of curves over finite fields.
2025
Ballini, Francesco; Lombardo, Davide; Verzobio, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1304518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact