Resonant inductive Wireless Power Transfer (WPT) offers a practical solution for supplying energy to consumer, industrial and medical devices. However, conventional WPT systems face severe limitations if one is interested to the dynamic and arbitrary control of the magnetic field distribution. Consequently, our paper explores the design and implementation of an electronically reconfigurable 5×5 magnetic metasurface for low-frequency WPT applications, operating at 3 MHz. The reconfigurable array is excited by a resonant transmitting coil operating in its near-field region. Through an analytical approach, the metasurface operation can be arbitrarily driven, obtaining the unit-cells current distribution which optimally reshapes the magnetic field for a desired application. In addition, the method also enables the precise determination of capacitive loads of each unit-cell for effectively synthetizing the metasurface response. Then, the reconfigurability process is accomplished by integrating varactor diodes within each unit-cell, providing real-time control of the currents pattern across the metasurface according to the analytical approach outputs. Finally, numerical simulations and experimental measurements on a fabricated prototype are presented, fully demonstrating the system's capability to efficiently switch between arbitrary configurations, either concentrating the magnetic field in specific areas or creating a uniform distribution. This dynamic adaptability addresses important challenges in WPT, such as reduction in alignment sensitivity and efficiency loss over distance, with enhanced flexibility, reliability, and safety.

An Electronically Reconfigurable Magnetic Metasurface for Enhanced Low-Frequency Wireless Power Transfer Applications

Masi, Angelica;Usai, Pierpaolo;Monorchio, Agostino;Brizi, Danilo
2025-01-01

Abstract

Resonant inductive Wireless Power Transfer (WPT) offers a practical solution for supplying energy to consumer, industrial and medical devices. However, conventional WPT systems face severe limitations if one is interested to the dynamic and arbitrary control of the magnetic field distribution. Consequently, our paper explores the design and implementation of an electronically reconfigurable 5×5 magnetic metasurface for low-frequency WPT applications, operating at 3 MHz. The reconfigurable array is excited by a resonant transmitting coil operating in its near-field region. Through an analytical approach, the metasurface operation can be arbitrarily driven, obtaining the unit-cells current distribution which optimally reshapes the magnetic field for a desired application. In addition, the method also enables the precise determination of capacitive loads of each unit-cell for effectively synthetizing the metasurface response. Then, the reconfigurability process is accomplished by integrating varactor diodes within each unit-cell, providing real-time control of the currents pattern across the metasurface according to the analytical approach outputs. Finally, numerical simulations and experimental measurements on a fabricated prototype are presented, fully demonstrating the system's capability to efficiently switch between arbitrary configurations, either concentrating the magnetic field in specific areas or creating a uniform distribution. This dynamic adaptability addresses important challenges in WPT, such as reduction in alignment sensitivity and efficiency loss over distance, with enhanced flexibility, reliability, and safety.
2025
Falchi, Martina; Masi, Angelica; Usai, Pierpaolo; Monorchio, Agostino; Brizi, Danilo
File in questo prodotto:
File Dimensione Formato  
An_Electronically_Reconfigurable_Magnetic_Metasurface_for_Enhanced_Low-Frequency_Wireless_Power_Transfer_Applications (1).pdf

accesso aperto

Descrizione: Resonant inductive Wireless Power Transfer (WPT) offers a practical solution for supplying energy to consumer, industrial and medical devices. However, conventional WPT systems face severe limitations if one is interested to the dynamic and arbitrary control of the magnetic field distribution. Consequently, our paper explores the design and implementation of an electronically reconfigurable 5×5 magnetic metasurface for low-frequency WPT applications, operating at 3 MHz. The reconfigurable array is excited by a resonant transmitting coil operating in its near-field region. Through an analytical approach, the metasurface operation can be arbitrarily driven, obtaining the unit-cells current distribution which optimally reshapes the magnetic field for a desired application. In addition, the method also enables the precise determination of capacitive loads of each unit-cell for effectively synthetizing the metasurface response. Then, the reconfigurability process is accomplished by integrating varactor diodes within each unit-cell, providing real-time control of the currents pattern across the metasurface according to the analytical approach outputs. Finally, numerical simulations and experimental measurements on a fabricated prototype are presented, fully demonstrating the system’s capability to efficiently switch between arbitrary configurations, either concentrating the magnetic field in specific areas or creating a uniform distribution. This dynamic adaptability addresses important challenges in WPT, such as reduction in alignment sensitivity and efficiency loss over distance, with enhanced flexibility, reliability, and safety.
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1307108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact