Recent advances in network science have resulted in two distinct research directions aimed at augmenting and enhancing representations for complex networks. The first direction, that of high-order modeling, aims to focus on connectivity between sets of nodes rather than pairs, whereas the second one, that of feature-rich augmentation, incorporates into a network all those elements that are driven by information which is external to the structure, like node properties or the flow of time. This paper proposes a novel toolbox, that of Attributed Stream Hypergraphs (ASHs), unifying both high-order and feature-rich elements for representing, mining, and analyzing complex networks. Applied to social network analysis, ASHs can characterize complex social phenomena along topological, dynamic and attributive elements. Experiments on real-world face-to-face and online social media interactions highlight that ASHs can easily allow for the analyses, among others, of high-order groups’ homophily, nodes’ homophily with respect to the hyperedges in which nodes participate, and time-respecting paths between hyperedges.

Attributed Stream Hypergraphs: temporal modeling of node-attributed high-order interactions

Failla, Andrea
;
Citraro, Salvatore;Rossetti, Giulio
2023-01-01

Abstract

Recent advances in network science have resulted in two distinct research directions aimed at augmenting and enhancing representations for complex networks. The first direction, that of high-order modeling, aims to focus on connectivity between sets of nodes rather than pairs, whereas the second one, that of feature-rich augmentation, incorporates into a network all those elements that are driven by information which is external to the structure, like node properties or the flow of time. This paper proposes a novel toolbox, that of Attributed Stream Hypergraphs (ASHs), unifying both high-order and feature-rich elements for representing, mining, and analyzing complex networks. Applied to social network analysis, ASHs can characterize complex social phenomena along topological, dynamic and attributive elements. Experiments on real-world face-to-face and online social media interactions highlight that ASHs can easily allow for the analyses, among others, of high-order groups’ homophily, nodes’ homophily with respect to the hyperedges in which nodes participate, and time-respecting paths between hyperedges.
2023
Failla, Andrea; Citraro, Salvatore; Rossetti, Giulio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1311989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact