Bacterial cellulose (BC) is a highly pure and crystalline cellulose produced via bacterial fermentation. However, due to its chemical structure made of strong hydrogen bonds and its high molecular weight, BC can neither be melted nor dissolved by common solvents. Therefore, processing BC implies the use of very strong, often toxic and dangerous chemicals. In this study, we proved a green method to produce electrospun BC fibers by testing different ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate (BmimAc), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium dicyanamide (EmimDCA), either individually or as binary mixtures. Moreover, γ-valerolactone (GVL) was tested as a co-solvent derived from renewable sources to replace dimethyl sulfoxide (DMSO), aimed at making the viscosity of the cellulose solutions suitable for electrospinning. A BmimAc and BmimAc/EmimTFSI (1:1 w/w) mixture could dissolve BC up to 3 w%. GVL was successfully applied in combination with BmimAc as an alternative to DMSO. By optimizing the electrospinning parameters, meshes of continuous BC fibers, with average diameters ~0.5 μm, were produced, showing well-defined pore structures and higher water absorption capacity than pristine BC. The results demonstrated that BC could be dissolved and electrospun via a BmimAc/GVL solvent system, obtaining ultrafine fibers with defined morphology, thus suggesting possible greener methods for cellulose processing.

A Green Method for Bacterial Cellulose Electrospinning Using 1-Butyl-3-Methylimidazolium Acetate and γ-Valerolactone

Elona Vasili;Bahareh Azimi;Andrea Mele;Patrizia Cinelli;MAURIZIA SEGGIANI
;
Serena Danti
2025-01-01

Abstract

Bacterial cellulose (BC) is a highly pure and crystalline cellulose produced via bacterial fermentation. However, due to its chemical structure made of strong hydrogen bonds and its high molecular weight, BC can neither be melted nor dissolved by common solvents. Therefore, processing BC implies the use of very strong, often toxic and dangerous chemicals. In this study, we proved a green method to produce electrospun BC fibers by testing different ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium acetate (BmimAc), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium dicyanamide (EmimDCA), either individually or as binary mixtures. Moreover, γ-valerolactone (GVL) was tested as a co-solvent derived from renewable sources to replace dimethyl sulfoxide (DMSO), aimed at making the viscosity of the cellulose solutions suitable for electrospinning. A BmimAc and BmimAc/EmimTFSI (1:1 w/w) mixture could dissolve BC up to 3 w%. GVL was successfully applied in combination with BmimAc as an alternative to DMSO. By optimizing the electrospinning parameters, meshes of continuous BC fibers, with average diameters ~0.5 μm, were produced, showing well-defined pore structures and higher water absorption capacity than pristine BC. The results demonstrated that BC could be dissolved and electrospun via a BmimAc/GVL solvent system, obtaining ultrafine fibers with defined morphology, thus suggesting possible greener methods for cellulose processing.
2025
Vasili, Elona; Azimi, Bahareh; Raut, Mahendra P.; Alexander Gregory, David; Mele, Andrea; Liu, Boyang; Römhild, Katrin; Krieg, Marcus; Claeyssens, Fre...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1312008
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact