The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. This study investigates fish and bovine collagen peptides (Collf and Collb, respectively) as sustainable sources for 3D-printed bone scaffolds by developing and characterizing peptide-incorporated alginate/hydroxyapatite-based bioinks. The chemical analysis revealed structural similarities between the peptides, while rheological tests showed a slightly higher viscosity of Collf-based inks, which improved shape fidelity during the printing process. Upon oscillating rheological tests, both the Collf and Collb-based ink formulations demonstrated a solid-like behavior at frequencies higher than 0.4 Hz, which is crucial for maintaining the printed structure integrity during extrusion. Although Collb-based inks exhibited better pore printability, Collf-based inks achieved superior resolution and geometry retention. Macro-porous structures printed from both inks showed good accuracy, with minimal shrinkage attributed to hydroxyapatite. Both the produced inks had a high gel fraction and swelling behavior, with Collb-based outperforming Collf-based inks. Finally, both ink formulations resulted to be cytocompatibile with human dermal fibroblasts. These findings position Collf- and Collb-based inks as promising alternatives for bone tissue scaffolds, offering a sustainable balance between performance and structural stability in 3D printing applications.

Rheology and Printability of Hydroxyapatite/Sodium Alginate Bioinks Added with Bovine or Fish Collagen Peptides

Mario Milazzo
;
Roberta Rovelli;Claudio Ricci;Teresa Macchi;Giuseppe Gallone
;
Serena Danti
2025-01-01

Abstract

The high biocompatibility and the key role of collagen in bone extracellular matrix make it useful for tissue engineering. However, the high demand, costs, and challenges of extracting good-quality collagen have led to the use of collagen derivatives and search for non-human alternatives. This study investigates fish and bovine collagen peptides (Collf and Collb, respectively) as sustainable sources for 3D-printed bone scaffolds by developing and characterizing peptide-incorporated alginate/hydroxyapatite-based bioinks. The chemical analysis revealed structural similarities between the peptides, while rheological tests showed a slightly higher viscosity of Collf-based inks, which improved shape fidelity during the printing process. Upon oscillating rheological tests, both the Collf and Collb-based ink formulations demonstrated a solid-like behavior at frequencies higher than 0.4 Hz, which is crucial for maintaining the printed structure integrity during extrusion. Although Collb-based inks exhibited better pore printability, Collf-based inks achieved superior resolution and geometry retention. Macro-porous structures printed from both inks showed good accuracy, with minimal shrinkage attributed to hydroxyapatite. Both the produced inks had a high gel fraction and swelling behavior, with Collb-based outperforming Collf-based inks. Finally, both ink formulations resulted to be cytocompatibile with human dermal fibroblasts. These findings position Collf- and Collb-based inks as promising alternatives for bone tissue scaffolds, offering a sustainable balance between performance and structural stability in 3D printing applications.
2025
Milazzo, Mario; Rovelli, Roberta; Ricci, Claudio; Macchi, Teresa; Gallone, Giuseppe; Danti, Serena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1314647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact