Aliphatic amine-functionalized metal–organic frameworks (MOFs) are receiving increasing attention for their potential as adsorbents for CO2. In this work, a two-step postsynthetic approach is presented, applied to defective ZrIV-based MOF UiO-66, which involves the exchange of N-tert-butyloxycarbonyl (Boc) protected ω-amino acids for defect-compensating formate groups, followed by thermal deprotection of the Boc groups to yield free amine groups. The chosen amino acids are glycine, 3-aminopropionic acid (β-alanine), γ-aminobutyric acid, and 5-aminovaleric acid. Postsynthetic exchange of the Boc-protected amino acids is carried out in N,N-dimethylformamide, observing no structural damage and a dependence of the loading of functional groups on the length of the aliphatic chain (the longer the chain, the lower the loading). Deprotection is achieved by heating the solids to 160 °C under a N2 stream, accompanied by the release of CO2 and isobutylene, as confirmed by thermogravimetric analysis coupled with infrared spectroscopy and mass spectrometry. The deprotected MOFs are characterized by their gas sorption properties, finding that functionalization of the defects led to a predictable decrease in porosity, without enhancing the affinity for CO2, suggesting that the amine groups might not be accessible.

A Postsynthetic Exchange/Deprotection Approach to Append Aliphatic Amines in Defective UiO-66

Della Croce F.;Pulidori E.;Duce C.;Taddei M.
2025-01-01

Abstract

Aliphatic amine-functionalized metal–organic frameworks (MOFs) are receiving increasing attention for their potential as adsorbents for CO2. In this work, a two-step postsynthetic approach is presented, applied to defective ZrIV-based MOF UiO-66, which involves the exchange of N-tert-butyloxycarbonyl (Boc) protected ω-amino acids for defect-compensating formate groups, followed by thermal deprotection of the Boc groups to yield free amine groups. The chosen amino acids are glycine, 3-aminopropionic acid (β-alanine), γ-aminobutyric acid, and 5-aminovaleric acid. Postsynthetic exchange of the Boc-protected amino acids is carried out in N,N-dimethylformamide, observing no structural damage and a dependence of the loading of functional groups on the length of the aliphatic chain (the longer the chain, the lower the loading). Deprotection is achieved by heating the solids to 160 °C under a N2 stream, accompanied by the release of CO2 and isobutylene, as confirmed by thermogravimetric analysis coupled with infrared spectroscopy and mass spectrometry. The deprotected MOFs are characterized by their gas sorption properties, finding that functionalization of the defects led to a predictable decrease in porosity, without enhancing the affinity for CO2, suggesting that the amine groups might not be accessible.
2025
Della Croce, F.; Mcpherson, M. J.; Pulidori, E.; Duce, C.; Taddei, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1318009
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact