The rapid increase in global warming requires that sustainable energy choices aimed at achieving net-zero greenhouse gas emissions be implemented as soon as possible. This objective, emerging from the European Green Deal and the UN Climate Action, could be achieved by using clean and efficient energy sources such as hydrogen produced from nuclear power. “Renewable” hydrogen plays a fundamental role in decarbonizing both the energy-intensive industrial and transport sectors while addressing the global increase in energy consumption. In recent years, several strategies for hydrogen production have been proposed; however, nuclear energy seems to be the most promising for applications that could go beyond the sole production of electricity. In particular, nuclear advanced reactors that operate at very high temperatures (VHTR) and are characterized by coolant outlet temperatures ranging between 550 and 1000 °C seem the most suitable for this purpose. This paper describes the potential use of nuclear energy in coordinated and coupled configurations to support clean hydrogen production. Operating conditions, energy requirements, and thermodynamic performance are described. Moreover, gaps that require additional technology and regulatory developments are outlined. The intermediate heat exchanger, which is the key component for the integration of nuclear hybrid energy systems, was studied by varying the thermal power to determine physical parameters needed for the feasibility study. The latter, consisting of the comparative cost evaluation of some nuclear hydrogen production methods, was carried out using the HEEP code developed by the IAEA. Preliminary results are presented and discussed.

Sustainable Hydrogen Production from Nuclear Energy

Lo Frano, Rosa
Secondo
Writing – Original Draft Preparation
;
Cancemi, Salvatore A.
Membro del Collaboration Group
2025-01-01

Abstract

The rapid increase in global warming requires that sustainable energy choices aimed at achieving net-zero greenhouse gas emissions be implemented as soon as possible. This objective, emerging from the European Green Deal and the UN Climate Action, could be achieved by using clean and efficient energy sources such as hydrogen produced from nuclear power. “Renewable” hydrogen plays a fundamental role in decarbonizing both the energy-intensive industrial and transport sectors while addressing the global increase in energy consumption. In recent years, several strategies for hydrogen production have been proposed; however, nuclear energy seems to be the most promising for applications that could go beyond the sole production of electricity. In particular, nuclear advanced reactors that operate at very high temperatures (VHTR) and are characterized by coolant outlet temperatures ranging between 550 and 1000 °C seem the most suitable for this purpose. This paper describes the potential use of nuclear energy in coordinated and coupled configurations to support clean hydrogen production. Operating conditions, energy requirements, and thermodynamic performance are described. Moreover, gaps that require additional technology and regulatory developments are outlined. The intermediate heat exchanger, which is the key component for the integration of nuclear hybrid energy systems, was studied by varying the thermal power to determine physical parameters needed for the feasibility study. The latter, consisting of the comparative cost evaluation of some nuclear hydrogen production methods, was carried out using the HEEP code developed by the IAEA. Preliminary results are presented and discussed.
2025
Buzzetti, Renato; Lo Frano, Rosa; Cancemi, Salvatore A.
File in questo prodotto:
File Dimensione Formato  
energies-18-04632.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1324150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact