Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where genomic sequences can reach billions in length. This paper presents some recent results in which Roberto Grossi has been involved, showing how some of these indices do more than just efficiently represent data, but rather are able to bring out salient information within it, which can be exploited for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for indexing Maximal Common Subsequences between strings, which can enable analysis of genomic sequence similarity. Experimentally, we show that the results produced by the one index are consistent with the expectations about the results of the other index.

Subsequence-Based Indices for Genome Sequence Analysis

Buzzega G.;Conte A.;Guerrini V.;Punzi G.;Rosone G.;
2025-01-01

Abstract

Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where genomic sequences can reach billions in length. This paper presents some recent results in which Roberto Grossi has been involved, showing how some of these indices do more than just efficiently represent data, but rather are able to bring out salient information within it, which can be exploited for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for indexing Maximal Common Subsequences between strings, which can enable analysis of genomic sequence similarity. Experimentally, we show that the results produced by the one index are consistent with the expectations about the results of the other index.
2025
Buzzega, G.; Conte, A.; Guerrini, V.; Punzi, G.; Rosone, G.; Tattini, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1327607
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact