The emergence of multidrug-resistant pathogens, particularly Pseudomonas aeruginosa, represents a global health concern. Among its major virulence factors, elastase B (LasB), a zinc-dependent metalloprotease, plays a pivotal role in host tissue degradation, immune evasion, and biofilm formation. Targeting LasB with selective inhibitors offers a promising therapeutic strategy to mitigate bacterial virulence while minimizing selective pressure for resistance development. In this study, a series of N-benzyloxy amino acid derivatives were designed, synthesized, and evaluated for their inhibitory activity against LasB. Structure-based optimization led to the identification of compound 12 as the most potent inhibitor (Ki = 0.92 μM), exhibiting high selectivity for LasB over human matrix metalloproteinases. Cell-based assays demonstrated its ability to inhibit LasB proteolytic activity and reduce biofilm formation without affecting bacterial viability. These findings highlight the potential of LasB inhibitors as pathoblockers, providing a targeted approach to disarm bacterial virulence rather than exerting bactericidal pressure.

Identification of novel N-benzyloxy-amino acid hydroxamates as inhibitors of the virulence factor LasB from Pseudomonas aeruginosa

Di Leo, Riccardo
Primo
;
Crispino, Enrico;Cuffaro, Doretta;Maisetta, Giuseppantonio;Bertacca, Andrea;Batoni, Giovanna;Rossello, Armando;Nuti, Elisa
Ultimo
2025-01-01

Abstract

The emergence of multidrug-resistant pathogens, particularly Pseudomonas aeruginosa, represents a global health concern. Among its major virulence factors, elastase B (LasB), a zinc-dependent metalloprotease, plays a pivotal role in host tissue degradation, immune evasion, and biofilm formation. Targeting LasB with selective inhibitors offers a promising therapeutic strategy to mitigate bacterial virulence while minimizing selective pressure for resistance development. In this study, a series of N-benzyloxy amino acid derivatives were designed, synthesized, and evaluated for their inhibitory activity against LasB. Structure-based optimization led to the identification of compound 12 as the most potent inhibitor (Ki = 0.92 μM), exhibiting high selectivity for LasB over human matrix metalloproteinases. Cell-based assays demonstrated its ability to inhibit LasB proteolytic activity and reduce biofilm formation without affecting bacterial viability. These findings highlight the potential of LasB inhibitors as pathoblockers, providing a targeted approach to disarm bacterial virulence rather than exerting bactericidal pressure.
2025
Di Leo, Riccardo; Crispino, Enrico; Cuffaro, Doretta; Maisetta, Giuseppantonio; Bertacca, Andrea; Bianchi, Marta; Batoni, Giovanna; Wushur, Imin; Rahm...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1336147
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact