We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power $\dot{E} = 3.5 \times 10^{33}$ erg s–1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) × 10–8 cm–2 s–1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency $L_\gamma / \dot{E} \simeq 15\%$ for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

PULSED GAMMA RAYS FROM THE MILLISECOND PULSAR J0030+0451 WITH THE FERMI LARGE AREA TELESCOPE

BALDINI, LUCA;RAZZANO, MASSIMILIANO;
2009-01-01

Abstract

We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar (MSP) PSR J0030+0451 with the Large Area Telescope on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second MSP to be detected in gamma rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma-Ray Observatory. The spin-down power $\dot{E} = 3.5 \times 10^{33}$ erg s–1 is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, 0.07 ± 0.01 and 0.08 ± 0.02 wide, respectively, separated by 0.44 ± 0.02 in phase. The first gamma-ray peak falls 0.15 ± 0.01 after the main radio peak. The pulse shape is similar to that of the "normal" gamma-ray pulsars. An exponentially cutoff power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 ± 1.05 ± 1.35) × 10–8 cm–2 s–1 with cutoff energy (1.7 ± 0.4 ± 0.5) GeV. Based on its parallax distance of (300 ± 90) pc, we obtain a gamma-ray efficiency $L_\gamma / \dot{E} \simeq 15\%$ for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.
2009
Abdo, Aa; Ackermann, M; Atwood, Wb; Axelsson, M; Baldini, Luca; Ballet, J; Barbiellini, G; Bastieri, D; Battelino, M; Baughman, Bm; Bechtol, K; Bellazzini, R; Berenji, B; Bloom, Ed; Bonamente, E; Borgland, Aw; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, Th; Caliandro, Ga; Cameron, Ra; Caraveo, Pa; Casandjian, Jm; Cecchi, C; Charles, E; Chekhtman, A; Cheung, Cc; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen Tanugi, J; Cominsky, Lr; Conrad, J; Cutini, S; Dermer, Cd; De Angelis, A; De Palma, F; Digel, Sw; Dormody, M; Silva, Ede; Drell, Ps; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Focke, Wb; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, Ia; Grondin, Mh; Grove, Je; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, Ak; Hayashida, M; Hays, E; Hughes, Re; Johannesson, G; Johnson, As; Johnson, Rp; Johnson, Tj; Johnson, Wn; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kocian, Ml; Komin, N; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lee, Sh; Lemoine Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, Mn; Lubrano, P; Madejski, Gm; Makeev, A; Marelli, M; Mazziotta, Mn; Mcconville, W; Mcenery, Je; Meurer, C; Michelson, Pf; Mitthumsiri, W; Mizuno, T; Moiseev, Aa; Monte, C; Monzani, Me; Morselli, A; Moskalenko, Iv; Murgia, S; Nolan, Pl; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, Jf; Pancrazi, B; Paneque, D; Panetta, Jh; Parent, D; Pepe, M; Pesce Rollins, M; Piron, F; Porter, Ta; Raino, S; Rando, R; Razzano, Massimiliano; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, Ls; Rodriguez, Ay; Romani, Rw; Ryde, F; Sadrozinski, Hfw; Sanchez, D; Sander, A; Parkinson, Pms; Sgro, C; Siskind, Ej; Smith, Da; Smith, Pd; Spandre, G; Spinelli, P; Starck, Jl; Strickman, Ms; Suson, Dj; Tajima, H; Takahashi, H; Tanaka, T; Thayer, Jb; Thayer, Jg; Theureau, G; Thompson, Dj; Tibaldo, L; Torres, Df; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, Tl; Van Etten, A; Vilchez, N; Vitale, V; Waite, Ap; Watters, K; Webb, N; Wood, Ks; Ylinen, T; Ziegler, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/134002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact