In this article, we introduce a simple variational model describing the ground state of a superconducting charge qubit. The model gives rise to a shape optimization problem that aims at maximizing the number of qubit states at a given gating voltage. We show that for small values of the charge, optimal shapes exist and are C2, α-nearly spherical sets. In contrast, we prove that balls are not minimizers for large values of the charge and conjecture that optimal shapes do not exist, with the energy favoring disjoint collections of sets.

An optimal design problem for a charge qubit

Mazzoleni, Dario;Muratov, Cyrill B.
;
Ruffini, Berardo
2025-01-01

Abstract

In this article, we introduce a simple variational model describing the ground state of a superconducting charge qubit. The model gives rise to a shape optimization problem that aims at maximizing the number of qubit states at a given gating voltage. We show that for small values of the charge, optimal shapes exist and are C2, α-nearly spherical sets. In contrast, we prove that balls are not minimizers for large values of the charge and conjecture that optimal shapes do not exist, with the energy favoring disjoint collections of sets.
2025
Mazzoleni, Dario; Muratov, Cyrill B.; Ruffini, Berardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1340489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact