Let {Y_i,−∞ < i < ∞} be a doubly infinite sequence of identically distributed ρ-mixing random variables, {a_i,−∞ < i < ∞} an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of the moving average processes {Σ_{i=-∞}^∞aiY_{i+n}, n ≥ 1}.

Limiting behaviour of moving average processes under rho-mixing assumption

GIULIANO, RITA;
2010-01-01

Abstract

Let {Y_i,−∞ < i < ∞} be a doubly infinite sequence of identically distributed ρ-mixing random variables, {a_i,−∞ < i < ∞} an absolutely summable sequence of real numbers. In this paper, we prove the complete convergence and Marcinkiewicz-Zygmund strong law of large numbers for the partial sums of the moving average processes {Σ_{i=-∞}^∞aiY_{i+n}, n ≥ 1}.
2010
Pingyan, Chen; Giuliano, Rita; TIEN CHUNG, Hu; Andrei, Volodin
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/135889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact