Horizontal points of smooth submanifolds in stratified groups play the role of singular points with respect to the Carnot-Carathéodory distance. When we consider hypersurfaces, they coincide with the well known characteristic points. In two-step groups, we obtain pointwise estimates for the Riemannian surface measure at all horizontal points of submanifolds with tangent spaces of Lipschitz regularity. As an application, for the same class of submanifolds, we establish an integral formula to compute their spherical Hausdorff measure. Our technique also shows that more regular submanifolds admit everywhere an intrinsic blow-up and the limit set is an intrinsically homogeneous algebraic variety.

Blow-up estimates at horizontal points and applications

MAGNANI, VALENTINO
2010

Abstract

Horizontal points of smooth submanifolds in stratified groups play the role of singular points with respect to the Carnot-Carathéodory distance. When we consider hypersurfaces, they coincide with the well known characteristic points. In two-step groups, we obtain pointwise estimates for the Riemannian surface measure at all horizontal points of submanifolds with tangent spaces of Lipschitz regularity. As an application, for the same class of submanifolds, we establish an integral formula to compute their spherical Hausdorff measure. Our technique also shows that more regular submanifolds admit everywhere an intrinsic blow-up and the limit set is an intrinsically homogeneous algebraic variety.
Magnani, Valentino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/137004
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact