We characterize locally Lipschitz mappings and existence of Lipschitz extensions through a first order nonlinear system of PDEs. We extend this study to graded group-valued Lipschitz mappings defined on compact Riemannian manifolds. Through a simple application, we emphasize the connection between these PDEs and the Rumin complex. We introduce a class of 2-step groups, satisfying some abstract geometric conditions and we show that Lipschitz mappings taking values in these groups and defined on subsets of the plane admit Lipschitz extensions. We present several examples of these groups, called Allcock groups, observing that their horizontal distribution may have any codimesion. Finally, we show how these Lipschitz extensions theorems lead us to quadratic isoperimetric inequalities in all Allcock groups.

Contact equations, Lipschitz extensions and isoperimetric inequalities

MAGNANI, VALENTINO
2010-01-01

Abstract

We characterize locally Lipschitz mappings and existence of Lipschitz extensions through a first order nonlinear system of PDEs. We extend this study to graded group-valued Lipschitz mappings defined on compact Riemannian manifolds. Through a simple application, we emphasize the connection between these PDEs and the Rumin complex. We introduce a class of 2-step groups, satisfying some abstract geometric conditions and we show that Lipschitz mappings taking values in these groups and defined on subsets of the plane admit Lipschitz extensions. We present several examples of these groups, called Allcock groups, observing that their horizontal distribution may have any codimesion. Finally, we show how these Lipschitz extensions theorems lead us to quadratic isoperimetric inequalities in all Allcock groups.
2010
Magnani, Valentino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/143991
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact