The purpose of this paper is two-fold: (1) to derive new existence results for tight contact structures on closed 3-manifolds presented by integral surgery along knots in S^3, and (2) to introduce a new invariant for transverse knots in contact 3-manifolds. Regarding (1), we extend our previous existence results from surgeries along knots of genus g and maximal Thurston–Bennequin number 2g − 1 to surgeries along knots of genus g and maximal self-linking number 2g − 1.

Contact surgery and transverse invariants

LISCA, PAOLO;
2011-01-01

Abstract

The purpose of this paper is two-fold: (1) to derive new existence results for tight contact structures on closed 3-manifolds presented by integral surgery along knots in S^3, and (2) to introduce a new invariant for transverse knots in contact 3-manifolds. Regarding (1), we extend our previous existence results from surgeries along knots of genus g and maximal Thurston–Bennequin number 2g − 1 to surgeries along knots of genus g and maximal self-linking number 2g − 1.
2011
Lisca, Paolo; Stipsicz, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/144624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact