Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CINECA IRIS Institutional Research Information System
We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
INSIGHTS INTO THE HIGH-ENERGY gamma-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE FERMI ERA
Abdo A. A.;Ackermann M.;Ajello M.;Allafort A.;BALDINI, LUCA;Ballet J.;Barbiellini G.;Baring M. G.;Bastieri D.;Bechtol K.;Bellazzini R.;Berenji B.;Blandford R. D.;Bloom E. D.;Bonamente E.;Borgland A. W.;Bouvier A.;Brandt T. J.;Bregeon J.;Brez A.;Brigida M.;Bruel P.;Buehler R.;Buson S.;Caliandro G. A.;Cameron R. A.;Cannon A.;Caraveo P. A.;Carrigan S.;Casandjian J. M.;Cavazzuti E.;Cecchi C.;Celik O. .;Charles E.;Chekhtman A.;Cheung C. C.;Chiang J.;Ciprini S.;Claus R.;Cohen Tanugi J.;Conrad J.;Cutini S.;Dermer C. D.;de Palma F.;do Couto e. Silva E.;Drell P. S.;Dubois R.;Dumora D.;Favuzzi C.;Fegan S. J.;Ferrara E. C.;Focke W. B.;Fortin P.;Frailis M.;Fuhrmann L.;Fukazawa Y.;Funk S.;Fusco P.;Gargano F.;Gasparrini D.;Gehrels N.;Germani S.;Giglietto N.;Giordano F.;Giroletti M.;Glanzman T.;Godfrey G.;Grenier I. A.;Guillemot L.;Guiriec S.;Hayashida M.;Hays E.;Horan D.;Hughes R. E.;Johannesson G.;Johnson A. S.;Johnson W. N.;Kadler M.;Kamae T.;Katagiri H.;Kataoka J.;Knoedlseder J.;Kuss M.;Lande J.;Latronico L.;Lee S. H.;Lemoine Goumard M.;Longo F.;Loparco F.;Lott B.;Lovellette M. N.;Lubrano P.;Madejski G. M.;Makeev A.;Max Moerbeck W.;Mazziotta M. N.;McEnery J. E.;Mehault J.;Michelson P. F.;Mitthumsiri W.;Mizuno T.;Moiseev A. A.;Monte C.;Monzani M. E.;Morselli A.;Moskalenko I. V.;Murgia S.;Naumann Godo M.;Nishino S.;Nolan P. L.;Norris J. P.;Nuss E.;Ohsugi T.;Okumura A.;Omodei N.;Orlando E.;Ormes J. F.;Paneque D.;Panetta J. H.;Parent D.;Pavlidou V.;Pearson T. J.;Pelassa V.;Pepe M.;Pesce Rollins M.;Piron F.;Porter T. A.;Raino S.;Rando R.;RAZZANO, MASSIMILIANO;Readhead A.;Reimer A.;Reimer O.;Richards J. L.;Ripken J.;Ritz S.;Roth M.;Sadrozinski H. F. W.;Sanchez D.;Sander A.;Scargle J. D.;Sgro C.;Siskind E. J.;Smith P. D.;Spandre G.;Spinelli P.;Stawarz L.;Stevenson M.;Strickman M. S.;Sokolovsky K. V.;Suson D. J.;Takahashi H.;Takahashi T.;Tanaka T.;Thayer J. B.;Thayer J. G.;Thompson D. J.;Tibaldo L.;Torres F.;Tosti G.;Tramacere A.;Uchiyama Y.;Usher T. L.;Vandenbroucke J.;Vasileiou V.;Vilchez N.;Vitale V.;Waite A. P.;Wang P.;Wehrle A. E.;Winer B. L.;Wood K. S.;Yang Z.;Ylinen T.;Zensus J. A.;Ziegler M.;Aleksic J.;Antonelli L. A.;Antoranz P.;Backes M.;Barrio J. A.;Gonzalez J. Becerra;Bednarek W.;Berdyugin A.;Berger K.;Bernardini E.;Biland A.;Blanch O.;Bock R. K.;Boller A.;Bonnoli G.;Bordas P.;Tridon D. Borla;Bosch Ramon V.;Bose D.;Braun I.;Bretz T.;Camara M.;Carmona E.;Carosi A.;Colin P.;Colombo E.;Contreras J. L.;Cortina J.;Covino S.;Dazzi F.;de Angelis A.;del Pozo E. De Cea;De Lotto B.;De Maria M.;De Sabata F.;Mendez C. Delgado;Ortega A. Diago;Doert M.;Dominguez A.;Prester D. Dominis;Dorner D.;Doro M.;Elsaesser D.;Ferenc D.;Fonseca M. V.;Font L.;Lopen R. J. Garcia;Garczarczyk M.;Gaug M.;Giavitto G.;Godinovi N.;Hadasch D.;Herrero A.;Hildebrand D.;Hoehne Moench D.;Hose J.;Hrupec D.;Jogler T.;Klepser S.;Kraehenbuehl T.;Kranich D.;Krause J.;La Barbera A.;Leonardo E.;Lindfors E.;Lombardi S.;Lopez M.;Lorenz E.;Majumdar P.;Makariev E.;Maneva G.;Mankuzhiyil N.;Mannheim K.;Maraschi L.;Mariotti M.;Martinez M.;Mazin D.;Meucci M.;Miranda J. M.;Mirzoyan R.;Miyamoto H.;Moldon J.;Moralejo A.;Nieto D.;Nilsson K.;Orito R.;Oya I.;Paoletti R.;Paredes J. M.;Partini S.;Pasanen M.;Pauss F.;Pegna R. G.;Perez Torres M. A.;Persic M.;Peruzzo J.;Pochon J.;PRADA MORONI, PIER GIORGIO;Prada F.;Prandini E.;Puchades N.;Puljak I.;Reichardt T.;Reinthal R.;Rhode W.;Ribo M.;Rico J.;Rissi M.;Ruegamer S.;Saggion A.;Saito K.;Saito T. Y.;Salvati M.;Sanchez Conde M.;Satalecka K.;Scalzotto V.;Scapin V.;Schultz C.;Schweizer T.;Shayduk M.;SHORE, STEVEN NEIL;Sierpowska Bartosik A.;Sillanpaa A.;Sitarek J.;Sobczynska D.;Spanier F.;Spiro S.;Stamerra A.;Steinke B.;Storz J.;Strah N.;Struebig J. C.;Suric T.;Takalo L. O.;Tavecchio F.;Temnikov P.;Terzic T.;Tescaro D.;Teshima M.;Vankov H.;Wagner R. M.;Weitzel Q.;Zabalza V.;Zandanel F.;Zanin R.;Acciari V. A.;Arlen T.;Aune T.;Benbow W.;Boltuch D.;Bradbury S. M.;Buckley J. H.;Bugaev V.;Cannon A.;Cesarini A.;Ciupik L.;Cui W.;Dickherber R.;Errando M.;Falcone A.;Finley J. P.;Finnegan G.;Fortson L.;Furniss A.;Galante N.;Gall D.;Gillanders G. H.;Godambe S.;Grube J.;Guenette R.;Gyuk G.;Hanna D.;Holder J.;Huang D.;Hui C. M.;Humensky T. B.;Kaaret P.;Karlsson N.;Kertzman M.;Kieda D.;Konopelko A.;Krawczynski H.;Krennrich F.;Lang M. J.;Maier G.;McArthur S.;McCann A.;McCutcheon M.;Moriarty P.;Mukherjee R.;Ong R.;Otte N.;Pandel D.;Perkins J. S.;Pichel A.;Pohl M.;Quinn J.;Ragan K.;Reyes L. C.;Reynolds P. T.;Roache E.;Rose H. J.;Rovero A. C.;Schroedter M.;Sembroski G. H.;Senturk G. D.;Steele D.;Swordy S. P.;Tesic G.;Theiling M.;Thibadeau S.;Varlotta A.;Vincent S.;Wakely S. P.;Ward J. E.;Weekes T. C.;Weinstein A.;Weisgarber T.;Williams D. A.;Wood M.;Zitzer B.;Villata M.;Raiteri C. M.;Aller H. D.;Aller M. F.;Arkharov A. A.;Blinov D. A.;Calcidese P.;Chen W. P.;Efimova N. V.;Kimeridze G.;Konstantinova T. S.;Kopatskaya E. N.;Koptelova E.;Kurtanidze O. M.;Kurtanidze S. O.;Lahteenmaki A.;Larionov V. M.;Larionova E. G.;Larionova L. V.;Ligustri R.;Morozova D. A.;Nikolashvili M. G.;Sigua L. A.;Troitsky I. S.;Angelakis E.;Capalbi M.;Carraminana A.;Carrasco L.;Cassaro P.;de la Fuente E.;Gurwell M. A.;Kovalev Y. Y.;Kovalev Y.u. A.;Krichbaum T. P.;Krimm H. A.;Leto P.;Lister M. L.;Maccaferri G.;Moody J. W.;Mori Y.;Nestoras I.;Orlati A.;Pagani C.;Pace C.;Pearson R. III;Perri M.;Piner B. G.;Pushkarev A. B.;Ros E.;Sadun A. C.;Sakamoto T.;Tornikoski M.;Yatsu Y.;Zook A. tschke V;Raab FJ;Rabeling DS;Racz I;Radkins H;Raffai P;Rakhmanov M;Ramet CR;Rankins B;Rapagnani P;Raymond V;Re V;Redwine K;Reed CM;Reed T;Regimbau T;Reid S;Reitze DH;Ricci F;Riesen R;Riles K;Roberts P;Robertson NA;Robinet F;Robinson C;Robinson EL;Rocchi A;Roddy S;Rolland L;Rollins J;Romano JD;Romano R;Romie JH;Rosinska D;Rover C;Rowan S;Udiger AR;Ruggi P;Ryan K;Sakata S;Sakosky M;Salemi F;Salit M;Sammut L;de la Jordana LS;Sandberg V;Sannibale V;Santamaria L;Santiago Prieto I;Santostasi G;Saraf S;Sassolas B;Sathyaprakash BS;Sato S;Satterthwaite M;Saulson PR;Savage R;Schilling R;Schlamminger S;Schnabel R;Schofield RMS;Schulz B;Schutz BF;Schwinberg P;Scott J;Scott SM;Searle AC;Seifert F;Sellers D;Sengupta AS;Sentenac D;Sergeev A;Shaddock DA;Shaltev M;Shapiro B;Shawhan P;Weerathunga TS;Shoemaker DH;Sibley A;Siemens X;Sigg D;Singer A;Singer L;Sintes AM;Skelton G;Slagmolen BJJ;Slutsky J;Smith JR;Smith MR;Smith ND;Smith R;Somiya K;Sorazu B;Soto J;Speirits FC;Sperandio L;Stefszky M;Stein AJ;Steinlechner J;Steinlechner S;Steplewski S;Stochino A;Stone R;Strain KA;Strigin S;Stroeer AS;Sturani R;Stuver AL;Summerscales TZ;Sung M;Susmithan S;Sutton PJ;Swinkels B;Szokoly GP;Tacca M;Talukder D;Tanner DB;Tarabrin SP;Taylor JR;Taylor R;Thomas P;Thorne KA;Thorne KS;Thrane E;Thuring A;Titsler C;Tokmakov KV;Toncelli A;Tonelli M;Torre O;Torres C;Torrie CI;Tournefier E;Travasso F;Traylor G;Trias M;Tseng K;Turner L;Ugolini D;Urbanek K;Vahlbruch H;Vaishnav B;Vajente G;Vallisneri M;van den Brand JFJ;Van Den Broeck C;van der Putten S;van der Sluys MV;van Veggel AA;Vass S;Vasuth M;Vaulin R;Vavoulidis M;Vecchio A;Vedovato G;Veitch J;Veitch PJ;Veltkamp C;Verkindt D;Vetrano F;Vicere A;Villar AE;Vinet JY;Vocca H;Vorvick C;Vyachanin SP;Waldman SJ;Wallace L;Wanner A;Ward RL;Was M;Wei P;Weinert M;Weinstein AJ;Weiss R;Wen L;Wen S;Wessels P;West M;Westphal T;Wette K;Whelan JT;Whitcomb SE;White D;Whiting BF;Wilkinson C;Willems PA;Williams HR;Williams L;Willke B;Winkelmann L;Winkler W;Wipf CC;Wiseman AG;Woan G;Wooley R;Worden J;Yablon J;Yakushin I;Yamamoto H;Yamamoto K;Yang H;Yeaton Massey D;Yoshida S;Yu P;Yvert M;Zanolin M;Zhang L;Zhang Z;Zhao C;Zotov N;Zucker ME;Zweizig J;Aptekar RL;Boynton WV;Briggs MS;Cline TL;Connaughton V;Frederiks DD;Gehrels N;Goldsten JO;Golovin D;van der Horst AJ;Hurley KC;Kaneko Y;von Kienlin A;Kouveliotou C;Krimm HA;Lin L;Mitrofanov I;Ohno M;Pal'shin VD;Rau A;Sanin A;Tashiro MS;Terada Y;Yamaoka Kn Y. A.;Kus V.;Kuykendall W.;Kuze M.;Kuzhir P.;Kvasnicka O.;Kwee R.;La Rosa A.;La Rotonda L.;Labarga L.;Labbe J.;Lacasta C.;Lacava F.;Lacker H.;Lacour D.;Lacuesta V. R.;Ladygin E.;Lafaye R.;Laforge B.;Lagouri T.;Lai S.;Laisne E.;Lamanna M.;Lampen C. L.;Lampl W.;Lancon E.;Landgraf U.;Landon M. P. J.;Landsman H.;Lane J. L.;Lange C.;Lankford A. J.;Lanni F.;Lantzsch K.;Lapin V. V.;Laplace S.;Lapoire C.;Laporte J. F.;Lari T.;Larionov A. V.;Larner A.;Lasseur C.;Lassnig M.;Lau W.;Laurelli P.;Lavorato A.;Lavrijsen W.;Laycock P.;Lazarev A. B.;Lazzaro A.;Le Dortz O.;Le Guirriec E.;Le Maner C.;Le Menedeu E.;Leahu M.;Lebedev A.;Lebel C.;LeCompte T.;Ledroit Guillon F.;Lee H.;Lee J. S. H.;Lee S. C.;Lee L.;Lefebvre M.;Legendre M.;Leger A.;LeGeyt B. C.;Legger F.;Leggett C.;Lehmacher M.;Miotto G. Lehmann;Lei X.;Leite M. A. L.;Leitner R.;Lellouch D.;Lellouch J.;Leltchouk M.;Lendermann V.;Leney K. J. C.;Lenz T.;Lenzen G.;Lenzi B.;Leonhardt K.;Leontsinis S.;Leroy C.;Lessard J. R.;Lesser J.;Lester C. G.;Cheong A. Leung Fook;Leveque J.;Levin D.;Levinson L. J.;Levitski M. S.;Lewandowska M.;Lewis G. H.;Leyton M.;Li B.;Li H.;Li S.;Li X.;Liang Z.;Liang Z.;Liberti B.;Lichard P.;Lichtnecker M.;Lie K.;Liebig W.;Lifshitz R.;Lilley J. N.;Limosani A.;Limper M.;Lin S. C.;Linde F.;Linnemann J. T.;Lipeles E.;Lipinsky L.;Lipniacka A.;Liss T. M.;Lissauer D.;Lister A.;Litke A. M.;Liu C.;Liu D.;Liu H.;Liu J. B.;Liu M.;Liu S.;Liu Y.;Livan M.;Livermore S. S. A.;Lleres A.;Lloyd S. L.;Lobodzinska E.;Loch P.;Lockman W. S.;Lockwitz S.;Loddenkoetter T.;Loebinger F. K.;Loginov A.;Loh C. W.;Lohse T.;Lohwasser K.;Lokajicek M.;Loken J.;Lombardo V. P.;Long R. E.;Lopes L.;Mateos D. Lopez;Losada M.;Loscutoff P.;Lo Sterzo F.;Losty M. J.;Lou X.;Lounis A.;Loureiro K. F.;Love J.;Love P. A.;Lowe A. J.;Lu F.;Lu J.;Lu L.;Lubatti H. J.;Luci C.;Lucotte A.;Ludwig A.;Ludwig D.;Ludwig I.;Ludwig J.;Luehring F.;Luijckx G.;Lumb D.;Luminari L.;Lund E.;Lund Jensen B.;Lundberg B.;Lundberg J.;Lundquist J.;Lungwitz M.;Lupi A.;Lutz G.;Lynn D.;Lys J.;Lytken E.;Ma H.;Ma L. L.;Goia J. A. Macana;Maccarrone G.;Macchiolo A.;Macek B.;Machado Miguens J.;Macina D.;Mackeprang R.;Madaras R. J.;Mader W. F.;Maenner R.;Maeno T.;Maettig P.;Maettig S.;Magalhaes Martins P. J.;Magnoni L.;Magradze E.;Magrath C. A.;Mahalalel Y.;Mahboubi K.;Mahout G.;Maiani C.;Maidantchik C.;Maio A.;Majewski S.;Makida Y.;Makovec N.;Mal P.;Malecki Pa;Malecki P.;Maleev V. P.;Malek F.;Mallik U.;Malon D.;Maltezos S.;Malyshev V.;Malyukov S.;Mameghani R.;Mamuzic J.;Manabe A.;Mandelli L.;Mandic I.;Mandrysch R.;Maneira J.;Mangeard P. S.;Manjavidze I. D.;Mann A.;Manning P. M.;Manousakis Katsikakis A.;Mansoulie B.;Manz A.;Mapelli A.;Mapelli L.;March L.;Marchand J. F.;Marchese F.;Marchesotti M.;Marchiori G.;Marcisovsky M.;Marin A.;Marino C. P.;Marroquim F.;Marshall R.;Marshall Z.;Martens F. K.;Marti Garcia S.;Martin A. J.;Martin B.;Martin B.;Martin F. F.;Martin J. P.;Martin Ph
2011-01-01
Abstract
We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/145444
Citazioni
ND
160
182
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.