This paper studies left invertibility of discrete-time linear output-quantized systems. Quantized outputs are generated according to a given partition of the state-space, while inputs are sequences on a finite alphabet. Left invertibility, i.e. injectivity of I/O map is reduced to left D-invertibility, under suitable conditions. While left invertibility takes into account membership to sets of a given partition, left D-invertibility considers only membership to a single set and is much easier to detect. The condition under which left invertibility and left D-invertibility are equivalent is that the elements of the dynamic matrix of the system form an algebraically independent set. Our main result is a method to compute left D-invertibility for all linear systems with no eigenvalue of modulus one. Therefore, we are able to check left invertibility of output-quantized linear systems for a full measure set of matrices. Some examples are presented to show the application of the proposed method.
Left invertibility of discrete-time output-quantized systems: the linear case with finite inputs
DUBBINI, NEVIO;BICCHI, ANTONIO
2011-01-01
Abstract
This paper studies left invertibility of discrete-time linear output-quantized systems. Quantized outputs are generated according to a given partition of the state-space, while inputs are sequences on a finite alphabet. Left invertibility, i.e. injectivity of I/O map is reduced to left D-invertibility, under suitable conditions. While left invertibility takes into account membership to sets of a given partition, left D-invertibility considers only membership to a single set and is much easier to detect. The condition under which left invertibility and left D-invertibility are equivalent is that the elements of the dynamic matrix of the system form an algebraically independent set. Our main result is a method to compute left D-invertibility for all linear systems with no eigenvalue of modulus one. Therefore, we are able to check left invertibility of output-quantized linear systems for a full measure set of matrices. Some examples are presented to show the application of the proposed method.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.