Type 1 diabetes is characterized by local inflammation (insulitis) in the pancreatic islets causing β-cell loss. The mitochondrial pathway of apoptosis is regulated by the balance and interaction between Bcl-2 members. Here we clarify the molecular mechanism of β-cell death triggered by the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The combination of TNF-α + IFN-γ induced DP5, p53 up-regulated modulator of apoptosis (PUMA), and Bim expression in human islets and rodent β-cells. DP5 and PUMA inactivation by RNA interference partially protected against TNF-α + IFN-γ-induced β-cell apoptosis. DP5 knock-out mice had increased β-cell area, and isolated islets from these mice were resistant to cytokine exposure. Bim expression was transcriptionally regulated by STAT1, and its activation triggered cleavage of caspases. Silencing of Bim protected rodent and human β-cells to a large extent against TNF-α + IFN-γ, indicating a major role of this BH3-only activator protein in the mechanism of apoptosis. Our data support a highly regulated and context-dependent modulation of specific Bcl-2 members controlling the mitochondrial pathway of β-cell apoptosis during insulitis.

Cytokines Tumor Necrosis Factor-a and Interferon-? Induce Pancreatic ß-Cell Apoptosis through STAT1-mediated Bim Protein Activation.

MARCHETTI, PIERO;
2011-01-01

Abstract

Type 1 diabetes is characterized by local inflammation (insulitis) in the pancreatic islets causing β-cell loss. The mitochondrial pathway of apoptosis is regulated by the balance and interaction between Bcl-2 members. Here we clarify the molecular mechanism of β-cell death triggered by the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The combination of TNF-α + IFN-γ induced DP5, p53 up-regulated modulator of apoptosis (PUMA), and Bim expression in human islets and rodent β-cells. DP5 and PUMA inactivation by RNA interference partially protected against TNF-α + IFN-γ-induced β-cell apoptosis. DP5 knock-out mice had increased β-cell area, and isolated islets from these mice were resistant to cytokine exposure. Bim expression was transcriptionally regulated by STAT1, and its activation triggered cleavage of caspases. Silencing of Bim protected rodent and human β-cells to a large extent against TNF-α + IFN-γ, indicating a major role of this BH3-only activator protein in the mechanism of apoptosis. Our data support a highly regulated and context-dependent modulation of specific Bcl-2 members controlling the mitochondrial pathway of β-cell apoptosis during insulitis.
2011
Barthson, J; Germano, Cm; Moore, F; Maida, A; Drucker, Dj; Marchetti, Piero; Gysemans, C; Mathieu, C; Nuñez, G; Jurisicova, A; Eizirik, Dl; Gurzov, E. N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/148517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 89
social impact