This paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amounts of information at less predictable rates. We adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon. By exploiting the inherent packets payload, this technique effectively reduces the bandwidth required to guarantee stability. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. An explicit bound on the combined effects of the maximum time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD), for both measurements and control packets, is provided as a function of the basin of attraction and the model accuracy. Our control strategy is shown to be robust with respect to sector-bounded uncertainties in the plant model. Sampling of the control signal is also explicitly taken into account. A case study is presented which enlightens the great improvements induced by the packet-based control strategy over methods that send a single control value in each packet. © 2012 Elsevier Ltd. All rights reserved.

Exploiting Packet Size in Uncertain Nonlinear Networked Control Systems

BICCHI, ANTONIO
2012

Abstract

This paper addresses the problem of stabilizing uncertain nonlinear plants over a shared limited-bandwidth packet-switching network. While conventional control loops are designed to work with circuit-switching networks, where dedicated communication channels provide almost constant bit rate and delay, many networks, such as Ethernet, organize data transmission in packets, carrying larger amounts of information at less predictable rates. We adopt a model-based approach to remotely compute a predictive control signal on a suitable time horizon. By exploiting the inherent packets payload, this technique effectively reduces the bandwidth required to guarantee stability. Communications are assumed to be ruled by a rather general protocol model, which encompasses many protocols used in practice. An explicit bound on the combined effects of the maximum time between consecutive accesses to each node (MATI) and the transmission and processing delays (MAD), for both measurements and control packets, is provided as a function of the basin of attraction and the model accuracy. Our control strategy is shown to be robust with respect to sector-bounded uncertainties in the plant model. Sampling of the control signal is also explicitly taken into account. A case study is presented which enlightens the great improvements induced by the packet-based control strategy over methods that send a single control value in each packet. © 2012 Elsevier Ltd. All rights reserved.
Greco, L; Chaillet, A; Bicchi, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/153146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 24
social impact