The thermal degradation process of a commercial intumescent epoxy resin for fireproofing applications was investigated. The changes in the morphology of the material during exposure to fire-like conditions were interpreted in the light of the degradation of single material components and of the overall swelling mechanism. An apparent kinetic model was developed to describe the thermally activated conversion and the weight loss of the material. The dramatic change in the key properties of the material (thermal conductivity, volume swelling, and apparent density) was investigated and linked with the thermal degradation phenomena governing the swelling process. Models were developed to describe material properties as a function of temperature and material conversion. The models provide the simulation of the fire-triggered degradation of the sample material at the heating rates of interest, allowing a detailed analysis of fireproofing performance.

Behavior of intumescent epoxy resins in fireproofing applications

LANDUCCI, GABRIELE;BARONTINI, FEDERICA;
2012-01-01

Abstract

The thermal degradation process of a commercial intumescent epoxy resin for fireproofing applications was investigated. The changes in the morphology of the material during exposure to fire-like conditions were interpreted in the light of the degradation of single material components and of the overall swelling mechanism. An apparent kinetic model was developed to describe the thermally activated conversion and the weight loss of the material. The dramatic change in the key properties of the material (thermal conductivity, volume swelling, and apparent density) was investigated and linked with the thermal degradation phenomena governing the swelling process. Models were developed to describe material properties as a function of temperature and material conversion. The models provide the simulation of the fire-triggered degradation of the sample material at the heating rates of interest, allowing a detailed analysis of fireproofing performance.
2012
Gomez Mares, M; Tugnoli, A; Landucci, Gabriele; Barontini, Federica; Cozzani, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/153446
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 43
social impact