We consider the cubic nonlinear Schrödinger equation, posed on R^n × M, where M is a compact Riemannian manifold and n ≥ 2. We prove that under a suitable smallness in Sobolev spaces condition on the data there exists a unique global solution which scatters to a free solution for large times.
Small data scattering for the nonlinear Schrödinger equation on product spaces
VISCIGLIA, NICOLA
2012-01-01
Abstract
We consider the cubic nonlinear Schrödinger equation, posed on R^n × M, where M is a compact Riemannian manifold and n ≥ 2. We prove that under a suitable smallness in Sobolev spaces condition on the data there exists a unique global solution which scatters to a free solution for large times.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.