This paper presents the realization of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(ε-caprolactone) (PCL), and poly(lactide-coglycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.

Electrical and Mechanical Characterisation of Single Wall Carbon Nanotubes Based Composites for Tissue Engineering Applications

AHLUWALIA, ARTI DEVI;VOZZI, GIOVANNI
2013-01-01

Abstract

This paper presents the realization of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(ε-caprolactone) (PCL), and poly(lactide-coglycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.
2013
Whulanza, Y; Battini, E; Vannozzi, L; Vomero, M; Ahluwalia, ARTI DEVI; Vozzi, Giovanni
File in questo prodotto:
File Dimensione Formato  
yudan.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 738.35 kB
Formato Adobe PDF
738.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/158840
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact