We prove that a reaction-diffusion inclusion provides a sub-optimal approximation for anisotropic motion by mean curvature in the nonsmooth case. This result is valid in any space dimension and with a time-dependent driving force, provided we assume the existence of a regular flow. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.

Approximation and comparison for nonsmooth anisotropic motion by mean curvature in R^N

NOVAGA, MATTEO
2000-01-01

Abstract

We prove that a reaction-diffusion inclusion provides a sub-optimal approximation for anisotropic motion by mean curvature in the nonsmooth case. This result is valid in any space dimension and with a time-dependent driving force, provided we assume the existence of a regular flow. The crystalline case is included. As a by-product of our analysis, a comparison theorem between regular flows is obtained. This result implies uniqueness of the original flow.
2000
Bellettini, G; Novaga, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/163327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 33
social impact