The problem with accidental falls among elderly people has massive social and economic impacts. Falls in elderly people are the main cause of admission and extended period of stay in a hospital. It is the sixth cause of death for people over the age of 65, the second for people between 65 and 75, and the first for people over 75. Among people affected by Alzheimer’s Disease, the probability of a fall increases by a factor of three. Elderly care can be improved by using sensors that monitor the vital signs and activities of patients, and remotely communicate this information to their doctors and caregivers. For example, sensors installed in homes can alert caregivers when a patient falls. Research teams in universities and industries are developing monitoring technologies for in-home elderly care. They make use of a network of sensors including pressure sensors on chairs, cameras, and RFID tags embedded throughout the home of the elderly people as well as in furniture and clothing, which communicate with tag readers in floor mats, shelves, and walls. A fall can occur not only when a person is standing, but also while sitting on a chair or lying on a bed during sleep. The consequences of a fall can vary from scrapes to fractures and in some cases lead to death. Even if there are no immediate consequences, the long-wait on the floor for help increases the probability of death from the accident. This underlines the importance of real-time monitoring and detection of a fall to enable first-aid by relatives, paramedics or caregivers as soon as possible. Monitoring the activities of daily living (ADL) is often related to the fall problem and requires a non-intrusive technology such as a wireless sensor network. An elderly with risk of fall can be instrumented with (preferably) one wireless sensing device to capture and analyse the body movements continuously, and the system triggers an alarm when a fall is detected. The small size and the light weight make the sensor network an ideal candidate to handle the fall problem. The development of new techniques and technologies demonstrates that a major effort has been taken during the past 30 years to address this issue. However, the researchers took many different approaches to solve the problem without following any standard testing guidelines. In some studies, they proposed their own guidelines. In this Chapter, a contribution is made towards such a standardization by collecting the most relevant parameters, data filtering techniques and testing approaches from the studies done so far. State-of-the-art fall detection techniques were surveyed, highlighting the differences in their effectiveness at fall detection. A standard database structure was created for fall study that emphasizes the most important elements of a fall detection system that must be consid- ered for designing a robust system, as well as addressing the constraints and challenges.

Monitoring of human movements for fall detection and activities recognition in elderly care using wireless sensor network: a survey

AVVENUTI, MARCO;CORSINI, PAOLO;VECCHIO, ALESSIO;
2010-01-01

Abstract

The problem with accidental falls among elderly people has massive social and economic impacts. Falls in elderly people are the main cause of admission and extended period of stay in a hospital. It is the sixth cause of death for people over the age of 65, the second for people between 65 and 75, and the first for people over 75. Among people affected by Alzheimer’s Disease, the probability of a fall increases by a factor of three. Elderly care can be improved by using sensors that monitor the vital signs and activities of patients, and remotely communicate this information to their doctors and caregivers. For example, sensors installed in homes can alert caregivers when a patient falls. Research teams in universities and industries are developing monitoring technologies for in-home elderly care. They make use of a network of sensors including pressure sensors on chairs, cameras, and RFID tags embedded throughout the home of the elderly people as well as in furniture and clothing, which communicate with tag readers in floor mats, shelves, and walls. A fall can occur not only when a person is standing, but also while sitting on a chair or lying on a bed during sleep. The consequences of a fall can vary from scrapes to fractures and in some cases lead to death. Even if there are no immediate consequences, the long-wait on the floor for help increases the probability of death from the accident. This underlines the importance of real-time monitoring and detection of a fall to enable first-aid by relatives, paramedics or caregivers as soon as possible. Monitoring the activities of daily living (ADL) is often related to the fall problem and requires a non-intrusive technology such as a wireless sensor network. An elderly with risk of fall can be instrumented with (preferably) one wireless sensing device to capture and analyse the body movements continuously, and the system triggers an alarm when a fall is detected. The small size and the light weight make the sensor network an ideal candidate to handle the fall problem. The development of new techniques and technologies demonstrates that a major effort has been taken during the past 30 years to address this issue. However, the researchers took many different approaches to solve the problem without following any standard testing guidelines. In some studies, they proposed their own guidelines. In this Chapter, a contribution is made towards such a standardization by collecting the most relevant parameters, data filtering techniques and testing approaches from the studies done so far. State-of-the-art fall detection techniques were surveyed, highlighting the differences in their effectiveness at fall detection. A standard database structure was created for fall study that emphasizes the most important elements of a fall detection system that must be consid- ered for designing a robust system, as well as addressing the constraints and challenges.
2010
Abbate, S; Avvenuti, Marco; Corsini, Paolo; Vecchio, Alessio; Light, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/175775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 64
social impact