The regional distribution of geochemical and isotopic compositions of granitoid rocks from a Gondwana continental margin is studied to highlight its structure and geodynamic evolution. The intrusive rocks emplaced during the early Palaeozoic Ross Orogeny in northern Victoria Land (Antarctica) constitute a high-K calc-alkaline association. The geographic patterns of isotope and geochemical data on granitoid rocks allow the distinction of two portions of the continental margin, separated by a sharp discontinuity. The portion towards the palaeo-Pacific Ocean (Oceanward Side) displays strongly regular inland increase of Sr-and decrease of Nd-isotope ratios, coupled with analogous variations in major and trace elements; on this basis we infer a NW-SE-trending margin affected by SW-directed subduction. The portion towards the East Antarctic Craton (Continentward Side) shows a similar regular variation only for Nd isotope compositions, consistent with a hypothesis of a N-S-striking margin with west-ward subduction. In the Oceanward suggest that the granites were generated by extensive interaction of Side, isotope and trace-element characteristics suggest that the granites were generated by extensive interaction of mantle-derived magmas with high-level crustal melts. The origin of Continentward Side intrusives is compatible with a process of interaction between mantle-derived melts and a mafic granulite lower crust. The granitoids of the two crustal sectors share the same Proterozoic Sm-Nd model ages, suggesting that they both belong to the same crustal province. We interpret this arrangement of crustal segments as due to the shift and rotation of a forearc sliver of the Gondwana margin, This movement was likely enhanced by oblique subduction under an irregular margin weakened by the presence of a magmatic are. (C) 1998 Elsevier Science B.V. All rights reserved.

Geochemical and isotopic structure of the early Palaeozoic active margin of Gondwana in northern Victoria Land, Antarctica

ROCCHI, SERGIO;ARMIENTI, PIETRO;INNOCENTI, FABRIZIO;
1998-01-01

Abstract

The regional distribution of geochemical and isotopic compositions of granitoid rocks from a Gondwana continental margin is studied to highlight its structure and geodynamic evolution. The intrusive rocks emplaced during the early Palaeozoic Ross Orogeny in northern Victoria Land (Antarctica) constitute a high-K calc-alkaline association. The geographic patterns of isotope and geochemical data on granitoid rocks allow the distinction of two portions of the continental margin, separated by a sharp discontinuity. The portion towards the palaeo-Pacific Ocean (Oceanward Side) displays strongly regular inland increase of Sr-and decrease of Nd-isotope ratios, coupled with analogous variations in major and trace elements; on this basis we infer a NW-SE-trending margin affected by SW-directed subduction. The portion towards the East Antarctic Craton (Continentward Side) shows a similar regular variation only for Nd isotope compositions, consistent with a hypothesis of a N-S-striking margin with west-ward subduction. In the Oceanward suggest that the granites were generated by extensive interaction of Side, isotope and trace-element characteristics suggest that the granites were generated by extensive interaction of mantle-derived magmas with high-level crustal melts. The origin of Continentward Side intrusives is compatible with a process of interaction between mantle-derived melts and a mafic granulite lower crust. The granitoids of the two crustal sectors share the same Proterozoic Sm-Nd model ages, suggesting that they both belong to the same crustal province. We interpret this arrangement of crustal segments as due to the shift and rotation of a forearc sliver of the Gondwana margin, This movement was likely enhanced by oblique subduction under an irregular margin weakened by the presence of a magmatic are. (C) 1998 Elsevier Science B.V. All rights reserved.
1998
Rocchi, Sergio; Tonarini, S.; Armienti, Pietro; Innocenti, Fabrizio; Manetti, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/175797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 64
social impact