Broadband dielectric spectroscopy measurements were performed on glass-forming binary mixtures, composed of rigid polar molecules dissolved at low concentration in apolar viscous solvent (tristyrene). Dielectric spectra were dominated by the polar molecule contribution, so enabling the study of its dynamic behavior. A well resolved secondary relaxation, not attributable to internal degrees of freedom, was visible in both the liquid and glassy states: for its intermolecular nature, it can be called a 'genuine' Johari-Goldstein (JG) relaxation, in the sense that it is a local and non-cooperative process but entailing the motion of the molecule as a whole. Among our results, the following ones are noteworthy: (a) polar systems in the neat state showed an excess wing that became a well resolved JG-peak on mixing with the apolar solvent; (b) the time-scale distance between structural and JG loss peak increased with the apolar solvent fraction; (c) broader the structural loss peak was, larger was the separation in the frequency scale between structural and JG peak; (d) the JG relaxation time showed a non-Arrhenius temperature behavior above T, paralleling that of the structural relaxation time. All the results can be rationalized in the framework of Coupling Model. (c) 2006 Elsevier B.V. All rights reserved.

Genuine Johari-Goldstein beta-relaxations in glass-forming binary mixtures

CAPACCIOLI, SIMONE;LUCCHESI, MAURO;
2006-01-01

Abstract

Broadband dielectric spectroscopy measurements were performed on glass-forming binary mixtures, composed of rigid polar molecules dissolved at low concentration in apolar viscous solvent (tristyrene). Dielectric spectra were dominated by the polar molecule contribution, so enabling the study of its dynamic behavior. A well resolved secondary relaxation, not attributable to internal degrees of freedom, was visible in both the liquid and glassy states: for its intermolecular nature, it can be called a 'genuine' Johari-Goldstein (JG) relaxation, in the sense that it is a local and non-cooperative process but entailing the motion of the molecule as a whole. Among our results, the following ones are noteworthy: (a) polar systems in the neat state showed an excess wing that became a well resolved JG-peak on mixing with the apolar solvent; (b) the time-scale distance between structural and JG loss peak increased with the apolar solvent fraction; (c) broader the structural loss peak was, larger was the separation in the frequency scale between structural and JG peak; (d) the JG relaxation time showed a non-Arrhenius temperature behavior above T, paralleling that of the structural relaxation time. All the results can be rationalized in the framework of Coupling Model. (c) 2006 Elsevier B.V. All rights reserved.
2006
Capaccioli, Simone; Kessairi, K.; Prevosto, D.; Lucchesi, Mauro; Ngai, K. L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181076
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 45
social impact