Clustering aims to partition a data set into homogenous groups which gather similar objects. Object similarity, or more often object dissimilarity, is usually expressed in terms of some distance function. This approach, however, is not viable when dissimilarity is conceptual rather than metric. In this paper, we propose to extract the dissimilarity relation directly from the available data. To this aim, we train a feedforward neural network with some pairs of points with known dissimilarity. Then, we use the dissimilarity measure generated by the network to guide a new unsupervised fuzzy relational clustering algorithm. An artificial data set and a real data set are used to show how the clustering algorithm based on the neural dissimilarity outperforms some widely used (possibly partially supervised) clustering algorithms based on spatial dissimilarity.
Combining Supervised and Unsupervised Learning for Data Clustering
CORSINI, PAOLO;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO
2006-01-01
Abstract
Clustering aims to partition a data set into homogenous groups which gather similar objects. Object similarity, or more often object dissimilarity, is usually expressed in terms of some distance function. This approach, however, is not viable when dissimilarity is conceptual rather than metric. In this paper, we propose to extract the dissimilarity relation directly from the available data. To this aim, we train a feedforward neural network with some pairs of points with known dissimilarity. Then, we use the dissimilarity measure generated by the network to guide a new unsupervised fuzzy relational clustering algorithm. An artificial data set and a real data set are used to show how the clustering algorithm based on the neural dissimilarity outperforms some widely used (possibly partially supervised) clustering algorithms based on spatial dissimilarity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.