The chaperone behaviour of bovine serum albumin was compared with that of alpha-crystallin. The chaperone activity was assessed by measuring: (i) the ability to antagonize protein aggregation induced by heat; (ii) the capability to protect the activity of thermally stressed enzymes and (iii) the effectiveness in assisting the functional recovery of chemically denatured sorbitol dehydrogenase. Despite the lack of structural analogies, both proteins show several functional similarities in preventing inactivation of thermally stressed enzymes and in reactivating chemically denatured sorbitol dehydrogenase. As with alpha-crystallin, the chaperone action of bovine serum albumin appears to be ATP independent. Bovine serum albumin appears significantly less effective than alpha-crystallin only in preventing thermally induced protein aggregation. A possible relationship between chaperone function and structural organization is proposed. Together, our results indicate that bovine serum albumin acts as a molecular chaperone and that, for its particular distribution, can be included in the extracellular chaperone family.
Chaperone-like features of bovine serum albumin: a comparison with alpha-crystallin
MOSCHINI, ROBERTA;DEL CORSO, ANTONELLA;MURA, UMBERTO
2005-01-01
Abstract
The chaperone behaviour of bovine serum albumin was compared with that of alpha-crystallin. The chaperone activity was assessed by measuring: (i) the ability to antagonize protein aggregation induced by heat; (ii) the capability to protect the activity of thermally stressed enzymes and (iii) the effectiveness in assisting the functional recovery of chemically denatured sorbitol dehydrogenase. Despite the lack of structural analogies, both proteins show several functional similarities in preventing inactivation of thermally stressed enzymes and in reactivating chemically denatured sorbitol dehydrogenase. As with alpha-crystallin, the chaperone action of bovine serum albumin appears to be ATP independent. Bovine serum albumin appears significantly less effective than alpha-crystallin only in preventing thermally induced protein aggregation. A possible relationship between chaperone function and structural organization is proposed. Together, our results indicate that bovine serum albumin acts as a molecular chaperone and that, for its particular distribution, can be included in the extracellular chaperone family.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.