Mammography is widely recognized as the most reliable technique for early detection of breast cancers. Automated or semi-automated computerized classification schemes can be very useful in assisting radiologists with a second opinion about the visual diagnosis of breast lesions, thus leading to a reduction in the number of unnecessary biopsies. We present a computer-aided diagnosis (CADi) system for the characterization of massive lesions in mammograms, whose aim is to distinguish malignant from benign masses. The CADi system we realized is based on a three-stage algorithm: (a) a segmentation technique extracts the contours of the massive lesion from the image; (b) 16 features based on size and shape of the lesion are computed; (c) a neural classifier merges the features into an estimated likelihood of malignancy. A data set of 226 massive lesions (109 malignant and 117 benign) has been used in this study. The system performances have been evaluated in terms of the receiver-operating characteristic (ROC) analysis, obtaining A(z) = 0.80 +/- 0.04 as the estimated area under the ROC curve. (c) 2006 Elsevier B.V. All rights reserved. RI Retico, Alessandra /I-6321-2012

An automatic system to discriminate malignant from benign massive lesions on mammograms

DELOGU, PASQUALE;FANTACCI, MARIA EVELINA;
2006-01-01

Abstract

Mammography is widely recognized as the most reliable technique for early detection of breast cancers. Automated or semi-automated computerized classification schemes can be very useful in assisting radiologists with a second opinion about the visual diagnosis of breast lesions, thus leading to a reduction in the number of unnecessary biopsies. We present a computer-aided diagnosis (CADi) system for the characterization of massive lesions in mammograms, whose aim is to distinguish malignant from benign masses. The CADi system we realized is based on a three-stage algorithm: (a) a segmentation technique extracts the contours of the massive lesion from the image; (b) 16 features based on size and shape of the lesion are computed; (c) a neural classifier merges the features into an estimated likelihood of malignancy. A data set of 226 massive lesions (109 malignant and 117 benign) has been used in this study. The system performances have been evaluated in terms of the receiver-operating characteristic (ROC) analysis, obtaining A(z) = 0.80 +/- 0.04 as the estimated area under the ROC curve. (c) 2006 Elsevier B.V. All rights reserved. RI Retico, Alessandra /I-6321-2012
2006
Retico, A; Delogu, Pasquale; Fantacci, MARIA EVELINA; Kasae, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/182059
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact