The effect of acute ozone (O3) fumigation on isozyme patterns of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) in mature (ML) and young leaves (YL) of two poplar clones, contrasting in O3-sensitivity was analysed. Untreated leaves of both the O3-sensitive (O3-S) clone Eridano of Populus deltoides × P. maximowiczii and the O3-resistant (O3-R) clone I-214 of P. × euramericana showed four distinct SOD isoforms with a relative mobility (Rf) of 0.54 (MnSOD), 0.60 (Cu/ZnSOD), 0.65 (unidentified), and 0.71 (Cu/ZnSOD). After O3-fumigation the activity of the SOD isoforms showed only quantitative variations with respect to control plants. In ML of untreated O3-R plants seven POD isoforms (Rf = 0.13, 0.19, 0.34, 0.59, 0.64, 0.70 and 0.75) were found, while in YL one isoform (Rf = 0.34) was undetected. Only three POD isoforms in both ML and YL of untreated O3-S plants were resolved. The electrophoretic pattern of POD in O3-S leaves was greatly modified by acute O3-fumigation with the appearance of new isoforms in both YL and ML and the disappearance of an isoform (Rf = 0.13) in YL. Additionally, O3-exposure induced the appearance of two APX isoforms in YL (Rf = 0.66 and 0.70), and one isoform in ML (Rf = 0.70) of the O3-S clone. By contrast, the activity of the three APX isoformes (Rf = 0.64, 0.70 and 0.76) detected in O3-R leaves showed only quantitative variation with respect to untreated plants. From these data it is concluded that: 1) in these poplar hybrids antioxidant enzyme activity is developmentally regulated and greatly affected by acute O3 stress treatments and 2) the different enzymes activity displayed by the two poplar clones, especially for POD and APX isoformes, could partly explain their distinct O3-sensitivity.

Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone

BERNARDI, RODOLFO;NALI, CRISTINA;PUGLIESI, CLAUDIO;LORENZINI, GIACOMO;
2004

Abstract

The effect of acute ozone (O3) fumigation on isozyme patterns of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) in mature (ML) and young leaves (YL) of two poplar clones, contrasting in O3-sensitivity was analysed. Untreated leaves of both the O3-sensitive (O3-S) clone Eridano of Populus deltoides × P. maximowiczii and the O3-resistant (O3-R) clone I-214 of P. × euramericana showed four distinct SOD isoforms with a relative mobility (Rf) of 0.54 (MnSOD), 0.60 (Cu/ZnSOD), 0.65 (unidentified), and 0.71 (Cu/ZnSOD). After O3-fumigation the activity of the SOD isoforms showed only quantitative variations with respect to control plants. In ML of untreated O3-R plants seven POD isoforms (Rf = 0.13, 0.19, 0.34, 0.59, 0.64, 0.70 and 0.75) were found, while in YL one isoform (Rf = 0.34) was undetected. Only three POD isoforms in both ML and YL of untreated O3-S plants were resolved. The electrophoretic pattern of POD in O3-S leaves was greatly modified by acute O3-fumigation with the appearance of new isoforms in both YL and ML and the disappearance of an isoform (Rf = 0.13) in YL. Additionally, O3-exposure induced the appearance of two APX isoforms in YL (Rf = 0.66 and 0.70), and one isoform in ML (Rf = 0.70) of the O3-S clone. By contrast, the activity of the three APX isoformes (Rf = 0.64, 0.70 and 0.76) detected in O3-R leaves showed only quantitative variation with respect to untreated plants. From these data it is concluded that: 1) in these poplar hybrids antioxidant enzyme activity is developmentally regulated and greatly affected by acute O3 stress treatments and 2) the different enzymes activity displayed by the two poplar clones, especially for POD and APX isoformes, could partly explain their distinct O3-sensitivity.
Bernardi, Rodolfo; Nali, Cristina; Ginestri, P.; Pugliesi, Claudio; Lorenzini, Giacomo; Durante, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/185010
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact