Positioning algorithms in cellular networks has become increasingly important as a means of supporting emerging services that require a sufficiently precise estimation of the position of the mobile terminal (MT) associated with a given base station (BS). Currently, even the most sophisticated positioning algorithms require at least three BSs to achieve satisfactory precision. This paper presents a novel algorithm that makes use of a single-BS antenna array to locate MTs in cellular networks. A triangulation technique is utilized and supported by some minimal information about the environment in the BS neighborhood. This algorithm is shown to perform well when operating in a microcellular environment with perfect channel-parameter estimation. The effect of finite resolution of the input parameters is also investigated. The performance is analyzed for a universal mobile telecommunications system microcellular scenario through a three-dimensional deterministic channel model. Finally, the performance of the proposed positioning technique is compared to the well-known location method based on the time-of-arrival measurements at three different BSs.

A novel single base station location technique for microcellular wireless networks: Description and validation by a deterministic propagation model

NEPA, PAOLO;MANARA, GIULIANO;GIANNETTI, FILIPPO;
2004

Abstract

Positioning algorithms in cellular networks has become increasingly important as a means of supporting emerging services that require a sufficiently precise estimation of the position of the mobile terminal (MT) associated with a given base station (BS). Currently, even the most sophisticated positioning algorithms require at least three BSs to achieve satisfactory precision. This paper presents a novel algorithm that makes use of a single-BS antenna array to locate MTs in cellular networks. A triangulation technique is utilized and supported by some minimal information about the environment in the BS neighborhood. This algorithm is shown to perform well when operating in a microcellular environment with perfect channel-parameter estimation. The effect of finite resolution of the input parameters is also investigated. The performance is analyzed for a universal mobile telecommunications system microcellular scenario through a three-dimensional deterministic channel model. Finally, the performance of the proposed positioning technique is compared to the well-known location method based on the time-of-arrival measurements at three different BSs.
Porretta, M; Nepa, Paolo; Manara, Giuliano; Giannetti, Filippo; Dohler, M; Allen, B; Aghvami, A. H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/186516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 28
social impact