Proteins belonging to the ras superfamily are involved in cell proliferation of normal and neoplastic tissues. To be biologically active, they require post-translational isoprenylation by farnesyl-transferase and geranylgeranyl-transferase. Enzyme inhibition by drugs may thus represent a promising approach to the treatment of cancer. Therefore, the combined effect of BAL9611, a novel inhibitor of geranylgeranylation, and manumycin, a farnesyl-transferase inhibitor, was evaluated on the SW620 human colon cancer cell line which harbours a mutated K-ras gene. BAL9611 and manumycin dose-dependently inhibited SW620 cell growth with 50% inhibitory concentration (IC50) of 0.47 +/- 0.03 and 5.24 +/- 1.41 muM (mean +/- SE), respectively. The isobologram analysis performed at the IC50 level revealed that the combined treatment was highly synergistic with respect to cell growth inhibition. BAL9611 and manumycin were able to inhibit the geranylgeranylation of p21 rhoA and farnesylation of p21 ras; both drugs inhibited p42ERK2/MAPK phosphorylation, but their combination was more effective than either drug alone. Moreover, the enhanced inhibition of cell growth in vitro by the BAL9611-manumycin combination was also observed in vivo in CD nu/nu female mice xenografted with SW620 tumours. Finally, both drugs were able to induce cell death by apoptosis in vitro and in vivo, as demonstrated by perinuclear chromatin condensation, cytoplasm budding and nuclear fragmentation, and interoligonucleosomal DNA digestion. In conclusion, the inhibition of protein farnesylation enhances the chemotherapeutic effect of BAL9611 in vitro and in vivo in a synergistic fashion, as a result of the impairment of post-translational isoprenylation of proteins and phosphorylation of p42ERK2/MAPK, whose activation is associated with post-translational geranylgeranylation and farnesylation of p21 rhoA and p21 ras.
Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells
DI PAOLO, ANTONELLO;DANESI, ROMANO;MACCHIA, MARCO;BOGGI, UGO;
2001-01-01
Abstract
Proteins belonging to the ras superfamily are involved in cell proliferation of normal and neoplastic tissues. To be biologically active, they require post-translational isoprenylation by farnesyl-transferase and geranylgeranyl-transferase. Enzyme inhibition by drugs may thus represent a promising approach to the treatment of cancer. Therefore, the combined effect of BAL9611, a novel inhibitor of geranylgeranylation, and manumycin, a farnesyl-transferase inhibitor, was evaluated on the SW620 human colon cancer cell line which harbours a mutated K-ras gene. BAL9611 and manumycin dose-dependently inhibited SW620 cell growth with 50% inhibitory concentration (IC50) of 0.47 +/- 0.03 and 5.24 +/- 1.41 muM (mean +/- SE), respectively. The isobologram analysis performed at the IC50 level revealed that the combined treatment was highly synergistic with respect to cell growth inhibition. BAL9611 and manumycin were able to inhibit the geranylgeranylation of p21 rhoA and farnesylation of p21 ras; both drugs inhibited p42ERK2/MAPK phosphorylation, but their combination was more effective than either drug alone. Moreover, the enhanced inhibition of cell growth in vitro by the BAL9611-manumycin combination was also observed in vivo in CD nu/nu female mice xenografted with SW620 tumours. Finally, both drugs were able to induce cell death by apoptosis in vitro and in vivo, as demonstrated by perinuclear chromatin condensation, cytoplasm budding and nuclear fragmentation, and interoligonucleosomal DNA digestion. In conclusion, the inhibition of protein farnesylation enhances the chemotherapeutic effect of BAL9611 in vitro and in vivo in a synergistic fashion, as a result of the impairment of post-translational isoprenylation of proteins and phosphorylation of p42ERK2/MAPK, whose activation is associated with post-translational geranylgeranylation and farnesylation of p21 rhoA and p21 ras.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.