In 1998 Bulanov et al. [Phys. Rev. E 58, R5257 (1998)] proposed a novel scheme for the production of high-quality electron beams in laser wakefield acceleration in which a controlled longitudinal non-linear wave breaking is induced by a tailored electron density profile. This proposal was supported by both analytical and numerical results in a spatially one-dimensional configuration. In this paper we present results of a particle-in-cell simulation, two-dimensional in space and three-dimensional in the fields, of the interaction of an ultraintense laser pulse with a preformed plasma where the electron density decreases steeply from a first to a second plateau. We show that in our regime two-dimensional effects play a relevant role, allowing the production of well collimated, short and almost monochromatic electron beam. Remarkably low values of transverse and longitudinal normalized beam emittance epsilon(rms)(tr)=9x10(-2) mm mrad and epsilon(rms)(lon)=2 mm keV are obtained.

Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking

GIULIETTI, DANILO;PEGORARO, FRANCESCO
2003-01-01

Abstract

In 1998 Bulanov et al. [Phys. Rev. E 58, R5257 (1998)] proposed a novel scheme for the production of high-quality electron beams in laser wakefield acceleration in which a controlled longitudinal non-linear wave breaking is induced by a tailored electron density profile. This proposal was supported by both analytical and numerical results in a spatially one-dimensional configuration. In this paper we present results of a particle-in-cell simulation, two-dimensional in space and three-dimensional in the fields, of the interaction of an ultraintense laser pulse with a preformed plasma where the electron density decreases steeply from a first to a second plateau. We show that in our regime two-dimensional effects play a relevant role, allowing the production of well collimated, short and almost monochromatic electron beam. Remarkably low values of transverse and longitudinal normalized beam emittance epsilon(rms)(tr)=9x10(-2) mm mrad and epsilon(rms)(lon)=2 mm keV are obtained.
2003
Tomassini, P; Galimberti, M; Giulietti, A; Giulietti, Danilo; Gizzi, La; Labate, L; Pegoraro, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/187374
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 79
social impact