Many adverse effects of glucose were attributed to its increased routing through the hexosamine pathway (HBP). There is evidence for an autocrine role of the insulin signaling in beta-cell function. We tested the hypothesis that activation of the HBP induces defects in insulin biosynthesis by affecting the insulin-mediated protein translation signaling. Exposure of human pancreatic islets and RIN beta-cells to glucosamine resulted in reduction in glucose- and insulin-stimulated insulin biosynthesis, which in RIN beta-cells was associated with impairment in insulin-stimulated insulin receptor substrate-1 (IRS-1) phosphorylation at Tyr(608) and Tyr(628), which are essential for engaging phosphatidylinositol 3-kinase (PI 3-kinase). These changes were accompanied by impaired activation of PI 3-kinase, and activation of Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway. RIN beta-cells exposed to high glucose exhibited increased c-Jun N-terminal kinase (JNK) and ERK1/2 activity, which was associated with increased IRS-1 phosphorylation at serine (Ser)(307) and Ser(612), respectively, that inhibits coupling of IRS-1 to the insulin receptor and is upstream of the inhibition of IRS-1 tyrosine phosphorylation. Azaserine reverted the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Glucosamine mimicked the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Inhibition of JNK and MAPK kinase-1 activity reverted the negative effects of glucosamine on insulin-mediated protein synthesis. These results suggest that activation of the HBP accounts, in part, for glucose-induced phosphorylation at Ser(307) and Ser(612) of IRS-1 mediated by JNK and ERK1/2, respectively. These changes result in impaired coupling of IRS-1 and PI 3-kinase, and activation of the Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway.

Activation of the hexosamine pathway leads to phosphorylation of IRS-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mTOR insulin biosynthetic pathway in RIN pancreatic {beta}-cells

DEL GUERRA, SILVIA;DEL PRATO, STEFANO;MARCHETTI, PIERO;
2004-01-01

Abstract

Many adverse effects of glucose were attributed to its increased routing through the hexosamine pathway (HBP). There is evidence for an autocrine role of the insulin signaling in beta-cell function. We tested the hypothesis that activation of the HBP induces defects in insulin biosynthesis by affecting the insulin-mediated protein translation signaling. Exposure of human pancreatic islets and RIN beta-cells to glucosamine resulted in reduction in glucose- and insulin-stimulated insulin biosynthesis, which in RIN beta-cells was associated with impairment in insulin-stimulated insulin receptor substrate-1 (IRS-1) phosphorylation at Tyr(608) and Tyr(628), which are essential for engaging phosphatidylinositol 3-kinase (PI 3-kinase). These changes were accompanied by impaired activation of PI 3-kinase, and activation of Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway. RIN beta-cells exposed to high glucose exhibited increased c-Jun N-terminal kinase (JNK) and ERK1/2 activity, which was associated with increased IRS-1 phosphorylation at serine (Ser)(307) and Ser(612), respectively, that inhibits coupling of IRS-1 to the insulin receptor and is upstream of the inhibition of IRS-1 tyrosine phosphorylation. Azaserine reverted the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Glucosamine mimicked the stimulatory effects of high glucose on JNK and ERK1/2 activity and IRS-1 phosphorylation at Ser(307) and Ser(612). Inhibition of JNK and MAPK kinase-1 activity reverted the negative effects of glucosamine on insulin-mediated protein synthesis. These results suggest that activation of the HBP accounts, in part, for glucose-induced phosphorylation at Ser(307) and Ser(612) of IRS-1 mediated by JNK and ERK1/2, respectively. These changes result in impaired coupling of IRS-1 and PI 3-kinase, and activation of the Akt/mammalian target of rapamycin/phosphorylated heat- and acid-stable protein-1/p70S6 kinase pathway.
2004
Andreozzi, F; D'Alessandris, C; Federici, M; Laratta, E; DEL GUERRA, Silvia; DEL PRATO, Stefano; Marchetti, Piero; Lauro, R; Perticone, F; Sesti, G....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/187764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 60
social impact