Post-transplant diabetes mellitus represents an important complication of prolonged immunosuppressive treatment after solid organ transplantation. The immunosuppressive toxicity, responsible for a persistent impairment of glucose metabolism in pancreatic islet-transplanted patients, is mainly attributed to calcineurin inhibitors and steroids, while other immunosuppressive molecules (azathioprine and mycophenolic acid, MPA) are considered not to have a toxic effect. In the present study, in vitro effects of MPA have been investigated in mouse beta-cell lines (βTC-1 and βTC-6) and in purified human pancreatic islets. βTC-1, βTC-6, and human pancreatic islets were exposed to various concentrations of MPA for different times. Consequently, we evaluated the viability, the induction of apoptosis, the glucose-stimulated insulin secretion, and the expression of β-cell function genes (Isl1, Pax6, Glut-2, glucokinase) and apoptosis-related genes (Bax and Bcl2). βTC-1, βTC-6, and human islets treated, respectively, for 48 and 72 h with 15-30 nM MPA showed altered islet architecture, as compared with control cells. We observed for βTC-1 and βTC-6 almost 70% reduction in cell viability; three to sixfold induction of TUNEL/apoptotic-positive cells quantified by FACS analysis. A twofold increase in apoptotic cells was observed in human islets after MPA exposure associated with strong inhibition of glucose-stimulated insulin secretion. Furthermore, we showed significant down-regulation of gene expression of molecules involved in β-cell function and increase rate between Bax/Bcl2. Our data demonstrate that MPA has an in vitro diabetogenic effect interfering at multiple levels with survival and function of murine and human pancreatic β-cells.

In vitro effects of mycophenolic acid on survival, function, and gene expression of pancreatic beta-cells.

BOGGI, UGO;FILIPPONI, FRANCO;MARCHETTI, PIERO;
2012-01-01

Abstract

Post-transplant diabetes mellitus represents an important complication of prolonged immunosuppressive treatment after solid organ transplantation. The immunosuppressive toxicity, responsible for a persistent impairment of glucose metabolism in pancreatic islet-transplanted patients, is mainly attributed to calcineurin inhibitors and steroids, while other immunosuppressive molecules (azathioprine and mycophenolic acid, MPA) are considered not to have a toxic effect. In the present study, in vitro effects of MPA have been investigated in mouse beta-cell lines (βTC-1 and βTC-6) and in purified human pancreatic islets. βTC-1, βTC-6, and human pancreatic islets were exposed to various concentrations of MPA for different times. Consequently, we evaluated the viability, the induction of apoptosis, the glucose-stimulated insulin secretion, and the expression of β-cell function genes (Isl1, Pax6, Glut-2, glucokinase) and apoptosis-related genes (Bax and Bcl2). βTC-1, βTC-6, and human islets treated, respectively, for 48 and 72 h with 15-30 nM MPA showed altered islet architecture, as compared with control cells. We observed for βTC-1 and βTC-6 almost 70% reduction in cell viability; three to sixfold induction of TUNEL/apoptotic-positive cells quantified by FACS analysis. A twofold increase in apoptotic cells was observed in human islets after MPA exposure associated with strong inhibition of glucose-stimulated insulin secretion. Furthermore, we showed significant down-regulation of gene expression of molecules involved in β-cell function and increase rate between Bax/Bcl2. Our data demonstrate that MPA has an in vitro diabetogenic effect interfering at multiple levels with survival and function of murine and human pancreatic β-cells.
2012
Gallo, R; Natale, M; Vendrame, F; Boggi, Ugo; Filipponi, Franco; Marchetti, Piero; Laghi Pasini, F; Dotta, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/189136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact