We adopted decision fusion techniques to develop a computer-aided detection (CAD) system for automatic detection of pulmonary nodules in low-dose CT images. Two distinct phases, aimed, respectively, at detecting volumes of interests (VOIs) within the CT scan, and at classifying VOIs into nodules and non-nodules, were considered. Three algorithms, namely thresholding, region growing and robust fuzzy clustering, were used as VOI detectors. For the classification phase, we built multiclassifier systems, which aggregate the decisions of three statistical classifiers, a neural network and a decision tree. Finally, the receiver operating characteristic convex hull method was used to build the final classifier, which results to be the aggregation of the best local behaviors of both classifiers and combiners. All the CAD modules were tested on CT scans analyzed by two expert radiologists. In the experiments, we achieved a sensitivity of 92.5% against a specificity of 83.5%.

Computer-Aided Detection of Lung Nodules based on Decision Fusion Techniques

COCOCCIONI, MARCO;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO
2011-01-01

Abstract

We adopted decision fusion techniques to develop a computer-aided detection (CAD) system for automatic detection of pulmonary nodules in low-dose CT images. Two distinct phases, aimed, respectively, at detecting volumes of interests (VOIs) within the CT scan, and at classifying VOIs into nodules and non-nodules, were considered. Three algorithms, namely thresholding, region growing and robust fuzzy clustering, were used as VOI detectors. For the classification phase, we built multiclassifier systems, which aggregate the decisions of three statistical classifiers, a neural network and a decision tree. Finally, the receiver operating characteristic convex hull method was used to build the final classifier, which results to be the aggregation of the best local behaviors of both classifiers and combiners. All the CAD modules were tested on CT scans analyzed by two expert radiologists. In the experiments, we achieved a sensitivity of 92.5% against a specificity of 83.5%.
2011
M., Antonelli; Cococcioni, Marco; Lazzerini, Beatrice; Marcelloni, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/189332
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact