Mitochondrial diseases are due to impairment of the mitochondrial respiratory chain. A plausible pathogenic mechanism leading to cellular dysfunction and phenotypic expression is oxidative stress, but there are surprisingly few clinical studies on this subject. Glutathione (GSH) deficiency has been reported in mitochondrial diseases, and the biosynthesis of glutathione depends on cysteine availability. We have examined oxidative stress biomarkers [advanced oxidation protein products (AOPP) and ferric reducing antioxidant power (FRAP)] in blood samples from 27 patients and 42 controls. AOPP levels were greater in patients than in controls (P value < 0.00001). Therefore, we performed a double-blind cross-over study to evaluate if 30-day supplementation with a whey-based cysteine donor could modify these markers, reduce lactate concentration during aerobic exercise, or enhance muscular strength and quality of life. Treatment did not modify lactate concentration, clinical scale (MRC) or quality of life (SF-36), but significantly reduced oxidative stress levels. Our findings reinforce the notions that in mitochondrial diseases oxidative stress is important and can be reduced by administration of a cysteine donor. Oxidative stress biomarkers may be useful to detect redox imbalance in mitochondrial diseases and to provide non-invasive tools to monitor disease status.

Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation

MANCUSO, MICHELANGELO;ORSUCCI, DANIELE;GALETTA, FABIO;SANTORO, GINO;MURRI, LUIGI;SICILIANO, GABRIELE
2010-01-01

Abstract

Mitochondrial diseases are due to impairment of the mitochondrial respiratory chain. A plausible pathogenic mechanism leading to cellular dysfunction and phenotypic expression is oxidative stress, but there are surprisingly few clinical studies on this subject. Glutathione (GSH) deficiency has been reported in mitochondrial diseases, and the biosynthesis of glutathione depends on cysteine availability. We have examined oxidative stress biomarkers [advanced oxidation protein products (AOPP) and ferric reducing antioxidant power (FRAP)] in blood samples from 27 patients and 42 controls. AOPP levels were greater in patients than in controls (P value < 0.00001). Therefore, we performed a double-blind cross-over study to evaluate if 30-day supplementation with a whey-based cysteine donor could modify these markers, reduce lactate concentration during aerobic exercise, or enhance muscular strength and quality of life. Treatment did not modify lactate concentration, clinical scale (MRC) or quality of life (SF-36), but significantly reduced oxidative stress levels. Our findings reinforce the notions that in mitochondrial diseases oxidative stress is important and can be reduced by administration of a cysteine donor. Oxidative stress biomarkers may be useful to detect redox imbalance in mitochondrial diseases and to provide non-invasive tools to monitor disease status.
2010
Mancuso, Michelangelo; Orsucci, Daniele; Logerfo, A; Rocchi, A; Petrozzi, L; Nesti, C; Galetta, Fabio; Santoro, Gino; Murri, Luigi; Siciliano, Gabriele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/190915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 64
social impact