4-(Dimethylamino)pyridine-coated gold nanoparticles (DMAP-Au NPs) were synthesized, characterised and their interaction with DNA and living cells was analysed. Concerning the interaction of the DMAP-Au NPs with DNA, absorbance titrations indicate that a non-covalent interaction between DNA and the external surface of the NPs does take place. The binding constant was evaluated to be (2.8 ± 0.8) 9 105 M-1. Exposure of cultured cells to NPs revealed a dose-dependent effect on cell proliferation which was increased or reduced in dependence of DMAP-Au NPs concentrations. Subcellular localisation by transmission electron microscopy showed mitochondrial and nuclear localisations of NPs, thus suggesting their direct involvement in the mitochondrial alterations observed and a possible direct interaction with cell DNA. These findings clearly indicate that DMAP-Au NPs can strongly interact with living cells and confirm the importance of systematic evaluations of NPs properties, also in the perspective of their arising diagnostic and therapeutic applications
Analysis of 4-dimethylaminopyridine (DMAP)-gold nanoparticles behaviour in solution and of their interaction with calf thymus DNA and living cells
BIVER, TARITA;CORTI, ALESSANDRO;LORENZINI, EVELINA;MASINI, MATILDE;PAOLICCHI, ALDO;PUCCI, ANDREA;RUGGERI, GIACOMO;
2012-01-01
Abstract
4-(Dimethylamino)pyridine-coated gold nanoparticles (DMAP-Au NPs) were synthesized, characterised and their interaction with DNA and living cells was analysed. Concerning the interaction of the DMAP-Au NPs with DNA, absorbance titrations indicate that a non-covalent interaction between DNA and the external surface of the NPs does take place. The binding constant was evaluated to be (2.8 ± 0.8) 9 105 M-1. Exposure of cultured cells to NPs revealed a dose-dependent effect on cell proliferation which was increased or reduced in dependence of DMAP-Au NPs concentrations. Subcellular localisation by transmission electron microscopy showed mitochondrial and nuclear localisations of NPs, thus suggesting their direct involvement in the mitochondrial alterations observed and a possible direct interaction with cell DNA. These findings clearly indicate that DMAP-Au NPs can strongly interact with living cells and confirm the importance of systematic evaluations of NPs properties, also in the perspective of their arising diagnostic and therapeutic applicationsFile | Dimensione | Formato | |
---|---|---|---|
66/00832482309354073552080853257955179396
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
737.82 kB
Formato
Unknown
|
737.82 kB | Unknown | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.