The work presented here is aimed at suggesting plausible hypotheses for functional oligomeric forms of the human asialoglycoprotein receptor (ASGP-R), by applying a combination of different computational techniques. The functional ASGP-R is a hetero-oligomer, that comprises of several subunits of two different kinds (H1 and H2), which are highly homologous. Its stoichiometry is still unknown. An articulated step-wise modeling protocol was used in order to build the receptor model in a minimal oligomeric form, necessary for it to bind multi-antennary carbohydrate ligands. The ultimate target of the study is to contribute to increasing the knowledge of interactions between the human ASGP-R and carbohydrate ligands, at the molecular level, pertinent to applications in the field of hepatic tissue engineering.
Three-dimensional models of the oligomeric human Asialoglycoprotein Receptor (ASGP-R)
MASSARELLI, ILARIA;CHIELLINI, FEDERICA;CHIELLINI, EMO;BIANUCCI, ANNA MARIA PAOLA
2010-01-01
Abstract
The work presented here is aimed at suggesting plausible hypotheses for functional oligomeric forms of the human asialoglycoprotein receptor (ASGP-R), by applying a combination of different computational techniques. The functional ASGP-R is a hetero-oligomer, that comprises of several subunits of two different kinds (H1 and H2), which are highly homologous. Its stoichiometry is still unknown. An articulated step-wise modeling protocol was used in order to build the receptor model in a minimal oligomeric form, necessary for it to bind multi-antennary carbohydrate ligands. The ultimate target of the study is to contribute to increasing the knowledge of interactions between the human ASGP-R and carbohydrate ligands, at the molecular level, pertinent to applications in the field of hepatic tissue engineering.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.