Hydrogels are considered as excellent candidates for tissue substitutes by virtue of their high water content and biphasic nature. However, the fact that they are soft, wet and floppy renders them difficult to process and use as custom-designed scaffolds. To address this problem alginate hydrogels were modeled and characterized by measuring stress-strain and creep behavior as well as viscosity as a function of sodium alginate concentration, cross-linking time and calcium ion concentration. The gels were then microfabricated into scaffolds using the pressure-assisted microsyringe. The mechanical and viscous characteristics were used to generate a processing window in the form of a phase diagram which describes the fidelity of the scaffolds as a function of the material and machine parameters. The approach can be applied to a variety of microfabrication methods and biomaterials in order to design well-controlled custom scaffolds.

A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds

VOZZI, GIOVANNI;AHLUWALIA, ARTI DEVI
2009-01-01

Abstract

Hydrogels are considered as excellent candidates for tissue substitutes by virtue of their high water content and biphasic nature. However, the fact that they are soft, wet and floppy renders them difficult to process and use as custom-designed scaffolds. To address this problem alginate hydrogels were modeled and characterized by measuring stress-strain and creep behavior as well as viscosity as a function of sodium alginate concentration, cross-linking time and calcium ion concentration. The gels were then microfabricated into scaffolds using the pressure-assisted microsyringe. The mechanical and viscous characteristics were used to generate a processing window in the form of a phase diagram which describes the fidelity of the scaffolds as a function of the material and machine parameters. The approach can be applied to a variety of microfabrication methods and biomaterials in order to design well-controlled custom scaffolds.
Tirella, A; Orsini, A; Vozzi, Giovanni; Ahluwalia, ARTI DEVI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/194389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 63
social impact